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Abstract 

While protein tags are ubiquitously utilized in molecular biology, they harbor the potential to interfere 

with functional traits of their fusion counterparts. Systematic evaluation of the effect of protein tags on 

function would promote accurate use of tags in experimental setups. Here we examine the effect of 

Green Fluorescent Protein (GFP) tagging at either the N or C terminus of budding yeast proteins on 

subcellular localization and functionality. We use a competition-based approach to decipher the relative 

fitness of two strains tagged on the same protein but on opposite termini and from that infer the 

correct, physiological localization for each protein and the optimal position for tagging. Our study 

provides a first of a kind systematic assessment of the effect of tags on the functionality of proteins and 

provides a step toward broad investigation of protein fusion libraries.     

  

Highlights 

● Protein tags are widely used in molecular biology although they may interfere with protein 

function. 

● The subcellular localization of hundreds of proteins in yeast is different when tagged at the N or 

the C terminus. 

● A competition-based assay enables systematic deciphering of correct tagging terminus for 

essential proteins. 

● The presented approach can be used to derive physiologically relevant tagged libraries. 

 

Graphical abstract  

(Fig. 1B & Fig. 1C) 
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Report 

Protein tags are essential for a variety of assays in biology, from affinity tags for protein purification to 

fluorescent tags for visualization. However, tagging proteins comes at a price: fusion proteins are 

different from their native form and may suffer from impaired activity, reduced stability, loss of binding 

partners, wrong targeting, unnatural topology, etc [1–4]. Often, the same tag may induce different 

phenotypes depending on where it appears on the protein, e.g., the carboxy terminus (C’) or amino 

terminus (N’) of the polypeptide chain. For example, a recent comparison between two whole-genome 

libraries in the budding yeast Saccharomyces cerevisiae showed that about 10% of the proteins in yeast 

are localized to different subcellular localizations when tagged with GFP at either the N’ or C’ ([5]; Fig. 

1A). Further, it appears that alternate tagging may introduce systematic biases, as C’ tagging seems to 

better support mitochondrial and nuclear localization while N’ tagging seems to be better for supporting 

bud-neck targeting as well as enabling retention of proteins in the ER and later vesicular compartments 

rather than have them leak to the vacuole (Fig. 1A). Importantly these differences were not a result of 

large expression differences as both libraries were constructed without altering the native promoters, 

and therefore the expression levels of tagged proteins is similar to that in wild-type [5].  

 

Here we set out to ask: when tagging on opposing termini gives rise to different steady-state 

localizations, which tagged variant represents the physiologically relevant localization? For this we 

established a pairwise competition approach that relies on the assumption that there would be a growth 

advantage to the strain carrying the correctly localized protein form (Fig. 1B). We note that while 

protein function can be impaired without displaying a mis-localization, it is clear that a difference in 

localization affects the capacity of a protein to function properly in a cellular context. Further, while it 

may theoretically be that mis-localization gives rise to a growth advantage, here we assume that this is 

not the norm. To test our approach, 35 proteins in yeast were selected that are both essential [6] and 

differentially localized when tagged on the opposing termini (Table S1). We further included 22 

additional strains that are either non-essential and/or localized to similar subcellular localizations upon 

N’ or C’ tagging (a total of 57 strains; see Methods and Table S1 for the full list of proteins). We 

hypothesized that fitness differences could be easily monitored in essential proteins where even partial 

loss of the protein’s function inherently leads to a growth deficiency. We then measured the fitness of 

the two tagged strains relative to each other in a competition experiment and tracked which has a 

growth advantage. 

 

A total of 19 proteins (out of the 57) showed a significant fitness difference (Δµ) between the two 

tagged forms (|Δµ|>1.5%; Fig. 1C) - 12 cases where the C’ tagged form was superior and 7 cases where 
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the N’ form had an advantage. Notably, only 2 of the above 19 strains were from the control group 

(Sbf3, an essential protein that is non-differentially localized - see Fig. 2C and further below; and Ysy6, a 

protein of unknown function that is both non-essential and non-differentially localized and showed a Δµ 

of just over 1.5% - see Table S1), supporting the notion that the fitness difference between N’ and C’ 

tagging of proteins that are both essential and differentially localized would be larger (see Table S1 for 

Δµ values of all 57 pairs tested). To support the pairwise competition approach, we also performed 

growth assays to determine the effective growth rates Of all our strains without competition (Methods). 

 

 

Figure 1: Uncovering the physiological subcellular localization of proteins in yeast. (A) Comparison of localization 
assignments between the C’ tagged (y-axis;[7,8]) and N’ tagged GFP genome-scale library (x-axis;[5]). Altogether 
515 proteins are differentially localized, representing about 10% all yeast proteins. Grayscale goes from white 
(least) to black (most) strains with altered localization (data from [5]) (B) Schematic representation of the pairwise 
competition approach. The C’ tagged library was genetically modified to express cytosolic mCherry, which allows 
the quantitative measurement of population sizes of the two variants separately using flow cytometry on pooled 
mixed samples. Measurements were done every 24-hours for 4 days (about 30 generations; see Methods). (C) 
Distribution of the relative fitness (Δµ) for all essential proteins which are differentially localized (35 pairwise 
assays); yellow bars correspond to strains with Δµ<-1.5 and represent N’ winners, red bars are for Δµ>1.5 (C’ 
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winners) and grey bars are for variants that show less than 1.5% fitness difference. (D) The effective growth rates 
of all “winning” or ”losing” strains relative to wild type (0.35 h

-1
 in SC media), as determined from individual 

growth curve analyses (see Methods). The white line corresponds to the median value of each group (1.0 and 0.97 
for winners and losers, respectively); black area is the interquartile range (IQR). As a group, winners exhibit a 
significantly faster growth rate relative to losers (p-value=0.005; independent t-test). 

                           

Indeed, growth rate data support the competition results, since, as a group, the “winners” from the 

competition had faster growth rates than the “losers” (Fig. 1D). Importantly the winners’ growth rate 

was similar to that of wild type (median growth rates of 0.35h-1 and 0.34h-1 for winners and losers, 

respectively compared to a growth rate of 0.35h-1 for wild type; growth in SC media). The fact that 

winners grow as well as control strains implies that the localization patterns of the winning strains 

indeed represent the physiological scenario. However, we show that growth rate alone could not have 

differentiated most pairs as well as a competition assay, as only 6 of the 19 pairs that showed significant 

Δµ values in the pairwise competition assay also showed a significant growth rate difference when 

measured in isolation (p-value<0.01; Table S1).    

 

What can we learn about the cellular roles of proteins based on our analysis? Knowledge of the correct 

steady-state accumulation of a protein can give insights into its function. For example, Srp68 is the core 

component of the large ribonucleoprotein complex that constitutes the signal recognition particle (SRP) 

which enables co-translational targeting of proteins to the endoplasmic reticulum (ER). The SRP complex 

cycles between the cytosol where it binds translating ribosomes, and the ER membrane, where it binds 

its receptor. The cycle of binding and release is mediated by the GTPase activity of SRP and its receptor 

[9]. While it is clear that the complex cycles between two cellular locals, it is not clear where the 

majority of the protein should reside at steady state. The fact that the cytosolic localization seen with a 

C’ tag supported better growth suggests that the ER localization (Fig. 2B) represents a “trapped” 

intermediate that cannot properly dissociate from its receptor and hence is reduced in its targeting 

capacity. An example of a N’ tag winner is Hrt1 (Fig. 2D) ) that had nuclear localization with the N’ tag 

and a cytosolic one with a C’ tag. Hrt1 is a RING-H2 domain core subunit of multiple ubiquitin ligase 

complexes and our data suggests that its nuclear functions are the ones most affecting growth rate. 

Rpn12 is a proteasome subunit and is shown as a representative of a control, where both tagged forms 

are localized to the nucleus as expected of the proteasome and the fitness of both strains is similar (Fig. 

2A). Notably, in the set of control proteins, we observed one case, Sfb3, where the fitness of the C’ 

tagged variant was >5% higher than the N’ tag form, even though the subcellular localization of both the 

N’ and C’ tags was similar. Sfb3 functions as a heterodimer of the COPII vesicle coat and has multiple 

phosphorylation sites at its N’ [10]. It is likely that having an N’ GFP tag interrupts this proper function of 
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this protein on the ER. 

  

 

 

Figure 2:, Representative images showing proteins that (A) are localized to the same organelle and do not show a 

growth advantage with either tag (B) are localized to different places and show a growth advantage when 

harboring a C’ tag in comparison to an N’ tag (C) are localized to the same subcellular localizations yet show growth 

advantage when harboring a C’ tag (D) are localized to different cellular locals and show a growth advantage with 

an N’ tag in comparison to a C’ tag. All measurements were done in triplicates; error bars represent the standard 

deviations; shaded triangles correspond to |Δµ|≤1.5; bold font indicates the winning tag form; microscopy image 

scale-bars are 5µm. 

 

Our work suggests a systematic approach suited for gauging the effect of a tag on global protein 

functionality and localization. For proof of concept, we chose to focus only on proteins that show no 

overlap whatsoever in the set of compartments to which they are localized when tagged on opposing 

termini. Proteins with multiple localizations represent a significant fraction of all proteins, and often, 

subcellular localizations of the C’ and N’ variants overlap but are not identical, either in the total set of 

subcellular localizations and/or in the percentage localization to specific compartments. It is likely that 

even such cases would lead to significant fitness alterations and hence they can also be tested using the 
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presented methodology.  

 

A possible confounding factor of the presented approach is if tagging a specific protein resulted in an 

unexpected change in the physiology of the cells that is not directly a result of the tagged protein itself. 

An example of this could be the disruption of an overlapping coding or regulatory region to the tagged 

protein. In our assay, we have only three cases in which overlapping protein coding regions exist, and 

only one of them, Hrt1, has a significant fitness difference of 2.3% in favor of the N’ variant (overlapping 

coding regions are indicated in Table S1). We are also aware that the presented approach may be more 

relevant for essential proteins, since, for non-essential proteins, the fitness difference between the mis- 

and well-localized variants may be too small to detect. However, many “non-essential” proteins become 

essential under specific conditions (different media and/or genetic backgrounds), and hence they could 

be included in tailored analyses. For example, peroxisomal biogenesis proteins become essential when 

cells are grown in fatty acids as a sole carbon source and mutants lacking key mitochondrial proteins 

become essential when yeast are forced to respire. Further, the presented approach can readily be 

extended to study the effect of additional tags and therefore can be used to derive multiple 

physiologically relevant tagged libraries. In a similar manner, one can also test the effect of a given tag 

on the cellular function of a protein, by comparing the fitness of two variants that are localized to the 

same place (as in the case of Sfb3 (Fig. 2C)).  

 

To conclude, the presented approach provides a useful tool to study the relationship between protein 

function and cellular fitness. Accounting for potential caveats of protein tags is essential for accurate 

understanding of cell biology. Such data are hence valuable for systematic, as well as for detailed, 

investigation of many questions in molecular biology. 

 

Methods                    

A total of 57 proteins were analyzed: 35 essential and differentially localized proteins (the “study” 

subset); and a set of 22 control proteins that include: 9 essential and similarly localized proteins, 2 non-

essential and differentially localized proteins, 9 non-essential and similarly localized proteins [5,6] and 2 

different wild type variants (Table S1). Two tagged variants were considered to be differentially localized 

if no overlap whatsoever was found in the set of subcellular compartments to which they are localized.  

 

For each protein, two strains were mixed in SC media such that one strain was tagged with GFP at the C’ 

of the protein of interest (taken from the genome wide C’ GFP yeast collection [8]) and the second strain 

was tagged with GFP at the N’ (taken from the N’ genome wide yeast collection NATIVEpr-GFP [5]). 

Importantly, both proteins were expressed under their own natural promoter. To allow optical 
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separation between the strains, endogenous soluble mCherry was included in the C’ library strain 

(TEF2pr-mCherry tag was introduced into the URA3 locus; for more details see [8]). Cells were grown 

together for 24 hours, diluted 32-fold and then flow cytometry was used to monitor population sizes of 

the C’ and N’ tagged variants for 30 generations at 4 time-points (every 24 hours for 4 days).  

 

To calculate the relative fitness difference (Δµ), we normalized the ratio between C’ and N’ by the ratio 

at “day zero” to account for non-equal mixing of stains. Then, a linear regression model was fitted to the 

log of the ratio (y-axis in Fig. 2) against the number of generations (x-axis Fig. 2). A Δµ value was 

calculated as the slope of the fit line and was positive if the C’ strain exhibited better fitness and 

negative if N’ was better. We note that Δµ values can be treated as percent fitness advantage, for 

example, a Δµ value of -1.8 means that the N’ tagged variant is 1.8% fitter than the C’ strain. A Δµ value 

of 1.5 (in absolute values) was considered to be a significant difference as it was the maximum Δµ value 

observed across the 9 pairs of non-essential proteins that are localized to similar subcellular 

localizations.  

 

Flow cytometry was performed on the BD LSRII system (BD Biosciences). Fluorescent protein 

measurements were conducted with excitation at 488 nm and emission at 525±25 nm for GFP, 

excitation at 594 nm and emission at 610±10 nm for mCherry. The average number of cells analyzed was 

20,000. Gating of +GFP labeled population and +GFP+mCherry labeled population was done using a 

custom Matlab script; all measurements were done in triplicates. Downstream computational data 

processing was done using a custom Python script.  

 

C’ and N’ GFP tagged strain arrays were imaged using a ScanR system (Olympus) as previously described 

[8]. Images were acquired using a 60× air lens for GFP (excitation, 490/20 nm; emission, 535/50 nm), 

mCherry (excitation, 572/35 nm; emission, 632/60 nm), and brightfield channels. Images were 

transferred to ImageJ (1.51p Java1.8.0_144 (64-bit)), for slight, linear adjustments to contrast and 

brightness.  

 

For localization assignments, we reviewed images manually. As we did not use any co-localization 

markers, we assigned only those localizations that could be easily discriminated by eye: ER, nuclear 

periphery, cytosol, cell periphery, vacuole lumen, vacuole membrane, mitochondria, nucleus, bud or 

bud neck, and punctate (which includes structures such as the Golgi apparatus, peroxisomes, 

endosomes, p-bodies, inclusions, lipid droplets, other vesicular structures and subdomain 

compartments).  
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For growth curve assays, cells were grown in 96 well-plates in SC media at 30oC until stationary phase, 

serial dilution of 1:75 was then applied to a volume of 150 µl. Strains were grown in a shaking incubator 

at 30oC and were measured for OD600 (using infinite200 reader, Tecan Inc.) every 25 minutes for two 

days. Growth rates were computed by fitting a linear model to the log of the OD600 data using a custom 

python script. 
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