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SUMMARY

Translocation into the endoplasmic reticulum (ER) is
an initial and crucial biogenesis step for all secreted
and endomembrane proteins in eukaryotes. ER
insertion can take place through the well-character-
ized signal recognition particle (SRP)-dependent
pathway or the less-studied route of SRP-inde-
pendent translocation. To better understand the
prevalence of the SRP-independent pathway, we
systematically defined the translocational depen-
dence of the yeast secretome. By combining hydrop-
athy-based analysis and microscopy, we uncovered
that a previously unappreciated fraction of the yeast
secretome translocates without the aid of the SRP.
Furthermore, we validated a family of SRP-inde-
pendent substrates—the glycosylphosphatidylinosi-
tol (GPI)-anchored proteins. Studying this family, we
identified a determinant for ER targeting and uncov-
ered a network of cytosolic proteins that facilitate
SRP-independent targeting and translocation. These
findings highlight the underappreciated complexity
of SRP-independent translocation, which enables
this pathway to efficiently cope with its extensive
substrate flux.
INTRODUCTION

In eukaryotes, the initial biogenesis of secreted and endomem-

brane proteins takes place at the endoplasmic reticulum (ER),

towhich theseproteins are directed via their hydrophobic ER-tar-

geting sequences (Cross et al., 2009; Rapoport, 2007). To date,

two types of eukaryotic ER-targeting sequences have been

characterized: N0-terminal cleavable signal sequences (SS) and

transmembrane (TM) domains that act as signal anchors. These

determinants are recognized by cytosolic machineries that

enable subsequent translocation into the ER, while preventing

these substrates from folding or aggregating within the cytosol.

The first eukaryotic ER-targeting pathway identified was the

signal recognition particle (SRP) and its ER-bound receptor (Ra-

poport, 2007). This essential pathway, which binds hydrophobic
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ER-targeting sequences and mediates cotranslational translo-

cation, has since been studied in great detail and to atomic reso-

lution (Egea et al., 2005; Saraogi and Shan, 2011).

However, some secretory pathway proteins cannot use the

SRP-dependent pathway. This can be due to physical restraints

that prevent the ER-targeting sequence from binding to the SRP

before translation has terminated. For example, an alternate

pathway is required for the ER targeting and insertion of tail-

anchored (TA) proteins and short secretory proteins that cannot

recruit the SRP cotranslationally (Borgese et al., 2003;Müller and

Zimmermann, 1987). During the past 5 years, one alternate tar-

geting mechanism has been characterized for these proteins

and is termed the GET pathway in yeast or the TRC40 pathway

in mammals (Jonikas et al., 2009; Schuldiner et al., 2008; Stefa-

novic and Hegde, 2007).

Additionally, some secretory pathway proteins fail to engage

the SRP because they bear an insufficiently hydrophobic ER-tar-

geting sequence (Lee and Bernstein, 2001; Ng et al., 1996). The

cytosolic factors mediating this form of SRP-independent trans-

location have remained poorly characterized (Cross et al., 2009).

However, the membranal machinery mediating the translocation

of these proteins has been elucidated and includes the canonical

translocon, together with auxillary factors (Rapoport, 2007). The

SRP-independent translocon is a tetrameric complex, which,

in yeast, comprises the essential Sec62 and Sec63 and the

nonessential Sec66 and Sec72 (Feldheim and Schekman,

1994; Panzner et al., 1995; Young et al., 2001). This SRP-inde-

pendent translocon enlists the lumenal chaperone BiP/Kar2 to

‘‘ratchet’’ its substrates into the ER (Matlack et al., 1999).

Most studies of the SRP-dependent and -independent path-

ways have focused on a small and well-defined group of model

proteins. Due to this lack of systematic data, the fraction of the

secretome that utilizes each pathway remains unknown. To

date, the signals guiding SRP-independent targeting and the

cytosolic protein network that recognizes SRP-independent sub-

strates prior to their translocation into the ER lumen have only

been partially elucidated (Becker et al., 1996; Caplan et al.,

1992; Chirico et al., 1988; Deshaies et al., 1988). Moreover, no

ER-targeting pathway has been described for these substrates.

To address these questions, we focused on one of the most

extensively researched eukaryotic secretion systems—that of

the baker’s yeast, Saccharomyces cerevisiae. We systematically

categorized the translocation mechanisms of the S. cerevisiae

secretome and further characterized the cytoplasmic effectors
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of SRP-independent translocation. Through hydropathy-based

analysis to identify proteins that would not engage the SRP,

we could show that a substantial number of proteins are pre-

dicted to use this pathway for ER entry in yeast. Further analysis

of one family of SRP-independent substrates, glycosylphopati-

dylinostol (GPI)-anchored proteins, demonstrated that their C0-
terminal anchor sequence plays a previously uncharacterized

role in ER targeting. Finally, we identified the cytoplasmic protein

network that recognizes, chaperones, and targets this SRP-

independent protein family to the ER. This analysis sets the

foundations for more a detailed understanding of this central

cellular pathway.

RESULTS

A Systematic Analysis of the Yeast Secretome Uncovers
the Prevalence of SRP-Independent Translocation
Recent studies have suggested that SRP-independent translo-

cation is more prominent than previously appreciated (Johnson

et al., 2012; Lakkaraju et al., 2012; Shao and Hegde, 2011).

However, even in the well-studied secretory pathway of yeast,

the scope of SRP-independent translocation remains unknown.

It has been demonstrated that, in yeast, the less hydrophobic the

N0-terminal ER-targeting sequence is, both in terms of overall

length and hydrophobicity, the more likely it is to be overlooked

by the SRP (Ng et al., 1996). We therefore decided to implement

these findings to systematically identify the repertoire of SRP-

independent proteins in the yeast secretome.

First, we compiled a list of all yeast proteins that are predicted

to be translocated into the ER (Figure 1A, left, and Table S1 avail-

able online). We then analyzed the first 60 amino acids (aa) of

these 1,145 proteins for hydrophobic features that have been

shown to modulate SRP binding (Figure 1A, middle) (Hatsuzawa

et al., 1997). Briefly, each protein’s maximum hydropathy was

plotted over a window of either 9, 11, or 19 aa using the Kyte-

Doolittle scale, and the length of the hydrophobic stretch was

analyzed by the Phobius algorithm (Käll et al., 2004). By

combining both of these parameters, we generated a compound

hydropathy score for the majority of the yeast secretome (Fig-

ure 1A, right, and Table S1), excluding 32.8% of the secretome

that does not contain significant hydropathy within its N0-
terminal 60 aa. To ascertain that the compound hydropathy

score correlates with the ability of an ER-targeting sequence to

bind to the SRP, we analyzed the hydropathy score of the hand-

ful of empirically validated translocation substrates (Ng et al.,

1996). Reassuringly, substrates that are known to be SRP inde-

pendent generated low compound hydropathy scores, whereas

those that are either partially or completely reliant on the SRP

bear median or high compound scores, respectively (Table

S1). Because the compound scores generated for all maximum

hydropathy windows show significant correlation (Figure S1A),

we chose to continue our analysis on the compound score

with a window size of 9 aa, as recent structural work on an

archeal SRP in complex with an ER-targeting sequence ex-

hibited a binding interface of this length (Janda et al., 2010).

Interestingly, the compound hydropathy scores that we ob-

tained were not distributed unimodaly (p value 0.0196), as might

be expected from targeting sequences that have evolved to
mediate two different translocational pathways (Figures 1A,

right, and S1B). Two subpopulations were evident, representing

targeting sequences with either a low score (median = 30.6, SD =

7.6) or a high score (median = 58.9, SD = 12.2). In light of this

distribution, we predicted that the population bearing a com-

pound hydropathy score below 40 would be SRP-independent

substrates (Figure 1A, right). Following this criteria, we found

that 333 proteins, or 43.3% of the analyzed yeast secretome,

would most likely be SRP-independent substrates, whereas

436 proteins, making up 56.7% of the analyzed secretome,

would engage the SRP either occasionally or consistently during

their translation (Figure 1B and Table S1). It should be empha-

sized that SRP independence is predicted solely on the

hydropathy of the first 60 aa for each protein and that highly

hydrophobic segments that occur more C0-terminally could

engage the SRP as translation continues. Thus, we further

identified a high-confidence SRP-independent group of 173

proteins that have a compound hydropathy score below 40

and are not predicted to contain other highly hydrophobic

domains, which could override their N0-terminal translocation

preference (Table S2).

It has previously been suggested that the various ER inser-

tion pathways might have adapted to better translocate specific

subsets of the secretome. Therefore, we examined whether

the predicted translocational groups shared unique structural

characteristics (Figure 1B). We found that the predicted SRP-

independent protein group, not constrained to the high-confi-

dence SRP-independent substrates, is enriched for proteins

that contain cleavable signal sequences (p value 3.16 3

10�71). Many of these substrates also harbor a C0-terminal

GPI-anchoring site (2.47 3 10�16), which undergoes cleavage

and anchoring within the ER. Conversely, the SRP-depen-

dent substrate group is comprised mostly of TM-bearing pro-

teins (3.3 3 10�49). Indeed, a cleavable SS is less hydrophobic

than a TM domain, explaining its lack of dependence on the

SRP machinery.

These striking correlations suggest that a protein’s transloca-

tion route is not random but rather that proteins with similar attri-

butes utilize a specific insertional pathway. Furthermore, these

findings put forth a model (Figure 1B) whereby the yeast SRP

binds highly hydrophobic sequences such as signal anchor TM

domains, as does the bacterial SRP (Huber et al., 2005). In

contrast, although some SSs were predicted to engage the

SRP, most were not and might rather bind to a different set of

chaperoning and ER-targeting proteins.

These hydropathy-based predictions uncovered an entire

repertoire of SRP-independent substrates that have never

been studied before. We therefore decided to verify the predic-

tions by looking at the in vivo translocation dependence of pre-

dicted SRP-independent substrates. To this end, we selected

high-confidence SRP-independent substrates that could be

visualized with a C0-terminal green fluorescent protein (GFP)

fusion and picked the 83 relevant strains from the GFP library

(Huh et al., 2003) (Table S2). These strains were then deleted

for the nonessential SEC72 gene, which encodes for a compo-

nent of the SRP-independent translocon (Rapoport, 2007). It

should be noted that the deletion of SEC72 does not completely

halt SRP-independent translocation (Feldheim and Schekman,
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Figure 1. Hydropathy-Based Analysis Predicts that a Substantial Fraction of the Yeast Secretome Will Not Bind the SRP

(A) A comprehensive list of the yeast secretome, which constitutes 1,145 proteins, was generated (left). The first 60 aa of each protein were analyzed to char-

acterize its ER-targeting sequence (Ng et al., 1996), scoring for both the length of the hydrophobic segment and its maximum hydrophobicity (middle). A potential

hydrophobic segment could be identified for 769 proteins. For each of these proteins, a compound hydropathy score was generated using both of these

parameters. This score exhibited a bimodal distribution within the population. Proteins scoring below a threshold of 40 were ranked as SRP-independent

substrates (left). See also Figure S1 and Tables S1 and S5.

(B) SRP-independent proteins are predicted to make up 43.3% of the yeast secretome (HC, high confidence). Domain analysis uncovered that predicted SRP-

independent proteins are enriched for SS- and GPI-anchoring sequences. In contrast, SRP-dependent proteins (56.7% of the secretome) utilize their first TM

domain as an SRP-recruiting signal anchor. In parentheses is the number of proteins in each category.

(C) To validate the hydropathy-based predictions, the localization of predicted SRP-independent and -dependent proteins was analyzed when the SRP-inde-

pendent translocon is impaired (Dsec72). Representative strains are shown here. Indeed, predicted SRP-independent substrates were mislocalized in Dsec72

cells, accumulating in cytosolic aggregates, whereas proteins predicted to be SRP dependent exhibited a WT phenotype in the Dsec72 mutant (lens 603).

See also Tables S2 and S3.
1994). By imaging the wild-type (WT) and Dsec72 strains, we

could verify 38 substrates that are mislocalized in the absence

of Sec72, representing 46% of the tested strains that most likely

undergo the severest cases of translocational attenuation (repre-

sentative strains in Figure 1C; Table S2). In contrast, the localiza-

tion of more than 100 GFP-tagged predicted SRP-dependent

proteins was not altered in the absence of Sec72 (representative

strains in Figure 1C; Table S3). These results suggest that our

hydropathy-based analysis can indeed reveal whether a protein

utilizes the SRP-independent pathway for ER targeting.
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The GPI-Anchored Protein Family Depends on SRP-
Independent Translocation for ER Insertion in Yeast
The predicted SRP-independent protein group was enriched

for the GPI-anchored protein family. The GPI-anchored proteins

undergo a posttranslational glycan-lipid modification in the

ER and are estimated to make up 10%–20% of eukaryotic

cell-surface proteins (Orlean and Menon, 2007). In our analysis,

all but one of the 57 putative family members displayed low

compound hydropathy scores (Table S1 and, by additional

methods, Figure S2). We could verify this prediction for all



Figure 2. GPI-Anchored Proteins Depend on the SRP-Independent Pathway for ER Insertion

(A) Two fluorescently tagged GPI-anchored proteins, Gas1 and Cwp2, were imaged following attenuation of general (sec61-DAmP), SRP-independent (sec62-

DAmP and Dsec72), or SRP-dependent translocation (sec65-1 at restrictive temperature). Both of these GPI-anchored proteins accumulate in cytosolic

aggregates in the absence of either the translocon or the SRP-independent pathway (lens 1003), while remaining unaffected by the mutation in the SRP. As

a control, Kar2, which is known to utilize both translocation mechanisms, is affected in all mutants. See also Figures S2 and S3.

(B) The SSs of GPI-anchored proteins were N0-terminally fused to GFP, and the efficiency of translocation of these fusion proteins was measured by analyzing

their secretion and probing for GFP. Whereas, in WT and SRP-depleted (sec65-1) cells, secretion of these GFP constructs takes place, GFP is no longer found in

the media when the SRP-independent translocon is impaired (Dsec72). In contrast, Kar2, which enters the ER through both pathways, displays a diminished rate

of secretion in both mutants.
13 C0-terminally GFP-tagged GPI-anchored proteins that were

tested (Table S2).

As C0-terminal GFP tagging masks the C0-terminal GPI anchor

sequence, it might alter the translocation dependency of GPI-

anchored proteins. Therefore, we analyzed the translocational

preference of two fluorescently tagged GPI-anchored proteins
(Figure 2A), Gas1 and Cwp2, which maintain their correct

SS and GPI anchor sequence organization (Castillon et al.,

2009; Fujita et al., 2006). Indeed, the localization of these GPI

fusion proteins was only affected by mutations in the translocon

(sec61-DAmP) or SRP-independent complex (sec62-DAmP and

Dsec72). Kar2, which is known to utilize both pathways (Ng et al.,
Cell 152, 1134–1145, February 28, 2013 ª2013 Elsevier Inc. 1137



Figure 3. Both the SS and the GPI-Anchoring Sequence Can Direct

ER Targeting

(A) Constructs encoding for either GFP, GFP N0-terminally fused to Gas1’s SS,

or GFP C0-terminally fused to Gas1’s GPI-anchoring sequence were imaged in

WT cells (lens 1003). Whereas GFP accumulates in the cytosol, Gas1SS-GFP

is secreted from the cell (see also Figure 2B). GFP-Gas1GPI generates a ring-

like ER pattern, indicating that the GPI-anchoring sequence undergoes ER

targeting.

(B) To assay whether the GPI-anchoring sequence directs ER targeting or

entry, a proteinase protection assay was carried out on microsomes prepared

from cells expressing Gas1SS-GFP or GFP-Gas1GPI, followed by an immu-

noblot for various proteins. After proteinase digestion, free GFP remained in

the Gas1SS-GFP microsomes, whereas complete digestion took place in the

GFP-Gas1GPImicrosomes, indicating that only the SS can direct entry into the

lumen of the ER. As controls, lumenal Kar2 is shielded during proteinase

treatment, whereas cytosolic Get3 is digested. The lumenal Pdi1 serves as

a loading control. All proteins are digested in the presence of the membrane-

perturbing agent, Triton.
1996), was also mislocalized in an SRP mutant (sec65-1). The

foci imaged in the absence of the SRP-independent transloca-

tion do indeed represent a preinserted aggregated form of these

proteins as indicated by their running size on an SDS-PAGE gel

and colocalization with inclusionmarkers (Figures S3A and S3B).

We also ensured that dependence on the SRP-independent

machinery was not an artifact of the fluorescent tagging, as

endogenous GPI-anchored proteins demonstrate the same

translocational dependence (Figure S3C and S3D).

To further ascertain that the dependence of GPI-anchored

proteins on the SRP-independent pathway is a family-wide

phenomenon in vivo, we fused the SS of five verified GPI-

anchored proteins to GFP. We assayed the ER insertion of these

fusion proteins by following GFP secretion into the medium (Fig-

ure 2B) in either WT cells or cells that are defective in the SRP-

dependent or independent insertion pathways (sec65-1 and

Dsec72, respectively). WhereasWT and sec65-1 (at the restrictive

temperature) cells secrete the variousSS-GFP fusionproteins into

the media, the secretion of all five was attenuated in Dsec72. In

contrast, Kar2 secretion into themedia isweakened, but not abol-

ished, in both the sec65-1and Dsec72 mutants (Figure 2B, right).

These results imply that the SS-GFP constructs—and ergo their

representative GPI-anchored proteins—fail to enter the secretory

pathway in the absence of SRP-independent translocation.

Every GPI-anchored protein that we have studied has shown

the same reliance on SRP-independent translocation. Moreover,

all GPI-anchored proteins have a similar ER-targeting domain.

These two facts strongly support the notion that, in yeast, this

entire protein family requires SRP-independent translocation

for ER entry. More generally, these findings indicate that the

SS is usually linked to SRP-independent translocation in yeast.

The GPI-Anchoring Sequence Has an Uncharacterized
Role in ER Targeting
Although GPI-anchored proteins carry an N0-terminal SS, they

also contain a C0-terminal GPI anchor sequence, which tags

them for a posttranslational modification with a glycolipid anchor

in the ER lumen (Orlean and Menon, 2007). The secretion assay

outlined above demonstrated that the SS itself is sufficient to

guide SRP-independent translocation, as expected. However,

it has been previously shown that the hydrophobic core of the

GPI anchor can substitute for that of the SS and maintain ER

translocation (Yan et al., 1998). We therefore wondered whether,

at its native C0-terminal location, the GPI anchor sequence also

partakes in any pretranslocation processes.

To address this question, we expressed either soluble GFP,

GFP tagged N0-terminally with the SS of Gas1 (Gas1SS-GFP),

or GFP tagged C0-terminally with the GPI anchor sequence of

Gas1 (GFP-Gas1GPI) in WT cells (Figure 3A). Although untagged

GFP was found in the cytosol, the Gas1SS-GFP construct was

secreted from the cell, generating a weak cytosolic pattern

(see also Figure 2B). Strikingly, the GFP-Gas1GPI fusion protein

exhibited a ring-like ER pattern, indicating that this domainmedi-

ates ER targeting.

To assaywhether theGPI anchor sequence takes part solely in

ER targeting or whether it also undergoes translocation, we per-

formed a proteinase protection assay on purified ER-derived

microsomes from the Gas1SS-GFP- or GFP-Gas1GPI-express-
1138 Cell 152, 1134–1145, February 28, 2013 ª2013 Elsevier Inc.
ing strains (Figure 3B). Microsomes extracted from both strains

contained the fusion proteins, demonstrating that both the SS

and GPI anchor sequence support ER association. However,

only the Gas1SS-GFP construct could generate a proteinase-

protected band, indicative of its insertion into the protective ER

lumen. Furthermore, this band is lost when the Gas1SS-GFP

microsomes are treated with both the membrane-perturbing

detergent Triton and proteinase. Therefore, it appears that the



Figure 4. Three Cytosolic Hsp40s Take Part in the Molecular

Chaperoning of Preinserted GPI-Anchored Proteins

(A) Four fluorescently tagged GPI-anchored proteins—Gas1, Ccw14, Cwp2,

and Tos6—were visualized in WT and a temperature-sensitive mutant of the

Hsp40 Ydj1 (ydj1-151), which cannot activate the cytosolic Hsp70 Ssa1.

Although GPI-anchored proteins are normally found on the cell surface, in

the ydj1-151 mutant, at the restrictive temperature, they also accumulate in

cytosolic aggregates (lens 1003), implying that the Ssa1-Ydj1 interaction is

important inmaintaining efficient GPI-anchored protein translocation. See also

Figure S4A.

(B) RFP-Gas1 was visually assayed in the absence of cytosolic Hsp40s

(lens 1003). The deletions of Apj1 or Jjj3 resulted in RFP-Gas1 accumulating

in cytosolic aggregates, indicating that they have a role in chaperoning

preinserted Gas1. A mutation in Ram1, required for the farnesylation of

Ydj1, also resulted in aggregate formation, suggesting that the ER localization
anchoring sequence has a previously unappreciated cytosolic

role in the targeting of its preinserted GPI-anchored proteins to

the cytosolic surface of the ER.

A Network of Specific Cytosolic Hsp40s Is Required for
the Efficient Chaperoning of GPI-Anchored Proteins
Both the SS and the anchor sequence contain a hydrophobic

core, which could lead to their aggregation should these

domains not be chaperoned prior to translocation. Furthermore,

the dimensions of the translocon pore dictate that proteins must

insert as secondary structured polypeptides, requiring the SRP-

independent substrate tomaintain a loosely folded conformation

while in the cytosol (Rapoport, 2007). Previous work has impli-

cated the cytosolic yeast Hsp70 protein Ssa1 in such preinser-

tional chaperoning (Chirico et al., 1988; Deshaies et al., 1988).

The promiscuous chaperoning capacity of Hsp70s is regu-

lated by the Hsp40 cochaperones, which induce higher-affinity

binding to the unfolded substrate by promoting the Hsp70’s

ATPase activity (Walsh et al., 2004). As their two hydrophobic

motifs must require extensive preinsertional shielding, we

hypothesized that GPI-anchored proteins could be utilized as

a powerful tool to study cytosolic Hsp40s as modulators of

SRP-independent chaperoning.

Ydj1, a yeast Hsp40 that is tethered to the ER membrane

via a farnesyl modification, has been shown to promote the

binding of Ssa1 to preinserted ppaf and proteinase A (Becker

et al., 1996; Caplan et al., 1992). We sought to test whether

this interaction is also important for the efficient ER insertion

of GPI-anchored proteins. We utilized a temperature-sensitive

form of Ydj1, ydj1-151, which is defective in promoting the

ATPase activity of Ssa1 (Caplan et al., 1992). Indeed, in the

mutant Ydj1 strain imaged at restrictive temperature, GPI-

anchored proteins partially accumulated in cytosolic aggregates

(Figure 4A), phenocopying the absence of the SRP-independent

translocation pathway. These findings indicate that Ydj1 and

Ssa1 play a part in the cytosolic chaperoning of a wide range

of SRP-independent substrates.

We also analyzed RFP-Gas1 in the absence of ER-localized

Ydj1 by deleting its farnesyl transferase, Dram1 (Flom et al.,

2008). Indeed, in the absence ofRAM1, RFP-Gas1 wasmislocal-

ized to cytosolic aggregates (Figure 4B, right). Moreover, when

RFP-Gas1 is expressed in Ydj1-GFP cells, where the C0-terminal

farnesylation of Ydj1 is blocked by the fluorophore, a similar

mislocalization is apparent (Figure S4A). Thus, it appears that

Ydj1 must be ER bound in order to function in preinsertional

chaperoning.

Although Ydj1 has been previously studied in the context

of translocation, it is unknown what role, if any, other Hsp40s

have in this pathway. Although all Hsp40s share the J domain
of Ydj1 is important for its preinsertional cochaperoning role. See also

Figure S4B.

(C) The effects of mutations in Apj1, Jjj3, and Ram1 on the localization of the

SRP-dependent and -independent substrates Hxt2 and CPY (Prc1) were

visually analyzed (lens 1003). None of the mutations affected the cell-surface

staining of Hxt2, indicating that this chaperoning network is specific to SRP-

independent substrates. Vacuolar Prc1-GFP (CPY) was mislocalized in the

absence of Jjj3 and Ram1, indicating that non-GPI SRP-independent sub-

strates engage a subset of this network.

Cell 152, 1134–1145, February 28, 2013 ª2013 Elsevier Inc. 1139



Figure 5. The GET Pathway Targets a Subset of Preinserted GPI-Anchored Proteins to the ER

(A) Mutations in various proteins of the GET pathway (Dget1, Dget3, and Dget5) affect the correct localization of RFP-Gas1 (lens 1003). See also Figure S5.

(B) The binding of Get3 to anHA-tagged form of Gas1, either bearing (3HA-Gas1) or lacking its C0-terminal GPI-anchoring domain (3HA-Gas1DGPI), was analyzed

following IP with an anti-HA antibody and probing against endogenous Get3. Get3 binds to the full HA-Gas1 protein, but not to the anchor-sequence-deleted

protein, although 30% more 3HA-Gas1DGPI is found in the cytosol.

(C)WhereasGas1 and Tos6 accumulate cytosolically in theDget1Dget3mutant, Ccw14 andCwp2 are not affected by thesemutations and exhibit normal surface

localization (lens 1003).

(legend continued on next page)
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through which they interact with Hsp70s, the 22 yeast Hsp40

proteins are not functionally identical. Genetic studies in yeast

have demonstrated that some Hsp40s are redundant, whereas

others appear to be specialists, whether due to structure or

localization (Sahi and Craig, 2007). We therefore wondered

whether a specific subset of cytosolic Hsp40s aids in the chaper-

oning of preinserted SRP-independent proteins. To this end, we

imaged the GPI-anchored protein RFP-Gas1 in the absence

of the 11 nonessential cytoplasmic Hsp40s (Figure S4B). RFP-

Gas1 accumulated in cytosolic puncta on the background of

only two mutations: Dapj1 and Djjj3 (Figure 4B). Under the

same conditions, the SRP-dependent substrate Hxt2 was not

mislocalized (Figure 4C, top) demonstrating that both Hsp40s

are specific for SRP-independent translocation. Neither one of

these Hsp40s have been previously characterized in mediating

efficient SRP-independent translocation, although their effect

on RFP-Gas1 was similar to mislocalized Ydj1.

We further validated the effects of theseHsp40s on a non-GPI-

anchored SRP-independent substrate, CPY (Prc1), which local-

izes to the vacuole (Figure 4C, bottom). Although the absence of

Jjj3 and Ram1 disturbed the efficient insertion of CPY, no effect

was witnessed in the Dapj1 mutant. It appears that the cocha-

peroning function of the Hsp40s is not uniform for all SRP-inde-

pendent substrates; SS-bearing proteins require only a subset of

these partners. Together, these results indicate that SRP-inde-

pendent ER insertion relies on a network of cochaperones that

maintain the translocational competence of its many varied

substrates.

The GET Pathway Functions in the ER Targeting of
a Subset of GPI-Anchored Proteins
Although cytosolic chaperoning mediated by Ydj1, Apj1, and Jjj3

plays a significant role in preserving the insertional competence

of SRP-independent substrates, we speculated that rapid ER

targeting might also promote efficient translocation of these

proteins. Genetic interaction studies (Costanzo et al., 2010;

Jonikas et al., 2009; Schuldiner et al., 2005) revealed that the

deletion of Ydj1 was synthetically lethal when combined with

deletions of the GET pathway (Figure S5), hinting that the two

might have parallel cellular functions. The GET pathway has

been characterized to take part in the SRP-independent ER tar-

geting and insertion of TA proteins, which contain a single TM

domain at their C0 terminus (Favaloro et al., 2008, 2010; Jonikas

et al., 2009; Leznicki et al., 2010; Schuldiner et al., 2008; Stefa-

novic and Hegde, 2007). As GPI-anchored proteins also contain

a hydrophobic C0-terminal element, we hypothesized that they

could also be candidate substrates for the GET pathway.

To ascertain whether the GET pathway takes part in the trans-

location of GPI-anchored proteins, we imaged RFP-Gas1 in cells

lacking Get1, Get3, or Get5 (Figure 5A), which represent the

three stages of this pathway: ER docking, ER targeting, and ribo-
(D) The GPI-anchoring sequence of Gas1, Tos6, Ccw14, and Cwp2 were analyzed

Gas1 and Tos6 encode for a GPI-anchoring sequence that is as hydrophobic as a

anchoring sequence. See also Table S4.

(E) Constructs bearing GFP-taggedC0-terminally withGas1 or Tos6GPI-anchoring

sequences of Ccw14 and Cwp2 do not (lens 1003), indicating that a hydrophob
somal handoff of substrates, respectively (Jonikas et al., 2009;

Schuldiner et al., 2008). In the absence of all of these various

GET components, RFP-Gas1 aggregated in the cytoplasm, sug-

gesting that the GET pathway might also play a role in the ER

targeting of GPI-anchored proteins.

Next, we wished to further verify that the effect of the GET

pathway is direct. Thus, we probed for a physical interaction

in vivo between Get3 and a hemagglutinin (HA)-tagged Gas1

either containing or lacking its GPI-anchoring sequence (3HA-

Gas1 and 3HA-Gas1DGPI) (Figure 5B). Following pull-down

on the HA tag, we found that Get3 is bound to the full-length

HA-Gas1 protein, but not to HA-Gas1 lacking its anchor

sequence, despite the fact that there is 30% more 3HA-

Gas1DGPI in the cytosol than 3HA-Gas1. Thus, it seems that

Get3 interacts with Gas1 in vivo in an anchor-sequence-depen-

dent manner in accordance with its previously characterized

binding preferences.

To discern whether the GET pathway affects other GPI-

anchored proteins, we visualized fluorescently tagged Tos6,

Ccw14, and Cwp2 in the absence of Get1 and Get3 (Figure 5C).

Interestingly, we saw that these proteins were differentially

impacted—whereas RFP-Gas1 and YFP-Tos6 showed GET

dependence, YFP-Ccw14 and YFP-Cwp2 localization was not

altered in the GET mutants. This dependence on the GET

pathway correlated with the hydrophobicity of the C0-terminal

GPI-anchoring sequence (Figure 5D). Gas1 and Tos6 contain

a GPI-anchoring sequence that is markedly hydrophobic and

TM like, making them structurally similar to the previously

described GET substrates, the TA proteins. In contrast, Ccw14

and Cwp2 have a mildly hydrophobic anchoring sequence.

When we analyzed the last 30 aa of all predicted GPI-anchored

proteins, we saw that �80% of them have a TM-like GPI-

anchoring sequence (Table S4). These findings would imply

that the GET pathway plays a role in targeting GPI-anchored

proteins to the ER surface. It is likely that additional mechanisms

for targeting exist for SRP-independent proteins that do not

contain a highly hydrophobic GPI-anchoring sequence.

If the GET pathway is indeed responsible for anchor-

sequence-dependent ER targeting, then we expected that only

TM-like GPI-anchoring sequences would induce targeting to

the ER. We therefore visualized the GPI-anchoring sequence of

Gas1, Tos6, Ccw14, and Cwp2 when fused to the C0 terminus

of GFP (Figure 5E). As expected, the GET-dependent Gas1

and Tos6 GPI-anchoring sequences generated a ring-like ER

pattern (arrows), whereas the anchoring sequences of Ccw14

and Cwp2 did not. Furthermore, swapping the TM domain of

a TA protein for the GPI-anchoring sequence of Gas1 also re-

sulted in an ER pattern (Figure S6). Thus, it seems that the hydro-

phobic core of the GPI-anchoring sequence has a role in the ER

targeting of the GPI-anchored proteins through the recruitment

of the GET pathway.
by TMHMM. GET dependence correlated with C0-terminal hydrophobicity, as

TM domain, whereas Ccw14 and Cwp2 only contain a mildly hydrophobic GPI-

sequence generate a ring-like ER pattern (arrows), whereas theGPI-anchoring

ic GPI-anchoring sequence directs ER targeting. See also Figure S6.
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Figure 6. Preinserted ER-Targeting

Domains Recruit Different Cytosolic Pro-

teins

(A) GFP-Gas1GPI was visualized in the absence of

the various cytosolic chaperones that we have

identified to affect GPI-anchored protein trans-

location (lens 1003). Apj1, Jjj3, and the GET

pathway affected the ability of the GFP-Gas1GPI

construct to reach the ER, whereas the mis-

localization of Ydj1 (Dram1) had no impact on its

localization.

(B) The secretion of the Gas1SS-GFP con-

struct was analyzed by immunoblot, probing for

secreted and cellular GFP in the above strains. The

secretion of this construct is attenuated in theDjjj3

and Dram1 strains.

(C) A model summarizing the chaperoning and

targeting pathways for preinserted GPI-anchored

proteins. While in the cytosol, SRP-independent

proteins present hydrophobic sequences that

engage the chaperoning and targeting machinery.

The N0-terminal SS can be recognized by the

Hsp40 Ydj1, whereas the C0-terminal GPI-

anchoring sequence engages the Hsp40 Apj1.

Both sequences can also be recognized by the

Hsp40 Jjj3. Furthermore, highly hydrophobic GPI

anchors complex with the GET pathway for ER

targeting.
The Two Hydrophobic Domains of GPI-Anchored
Proteins Differentially Recruit Targeting and
Chaperoning Factors
The SS- and GPI-anchoring sequences appear to signal that

the relevant preinserted protein requires chaperoning, while

also mediating ER targeting. We therefore sought to map the

sequence dependence of the various chaperoning and targeting

factors. To identify the proteins recruited by the GPI anchor

sequence, we imaged GFP-Gas1GPI on the background of all

mutants that we have characterized thus far to mediate efficient

translocation (Figure 6A). While in the absence of Apj1, Jjj3 or

the GET pathway this fusion protein accumulated in cytosolic

aggregates, mislocalized Ydj1 (Dram1) did not affect its localiza-

tion. No mutation completely abolished the ER targeting of the

GFP-Gas1GPI construct, implying that these proteins, and

potentially others, have overlapping roles in this capacity. We

then assayed the secretion of the Gas1SS-GFP construct in

these same mutants by western blot, probing for secreted and

cellular GFP (Figure 6B). Whereas mutations in Apj1 or the GET

pathway did not affect the levels of secreted Gas1SS-GFP,

mutants of Jjj3 and Ram1 exhibited lower levels of secreted

GFP. This correlates with the finding that the non-GPI-anchored

SRP-independent substrate, CPY, was mislocalized only in the

absence of Jjj3 and Ram1, but not Apj1 (Figure 4C).

These results map the contribution of each hydrophobic signal

in recruiting the cytosolic machinery (Figure 6C). The Hsp40 Ydj1

recruits the cytosolic chaperoning machinery to the SS, com-

mon to most SRP-independent substrates, whereas the GPI-

anchoring sequence engages the Hsp40 Apj1 for chaperoning

and the GET pathway for ER targeting. Additionally, both of

these hydrophobic sequences recruit Jjj3, which appears to
1142 Cell 152, 1134–1145, February 28, 2013 ª2013 Elsevier Inc.
act as a general chaperoning factor for the SRP-independent

pathway.

DISCUSSION

Although the mechanism of SRP-dependent translocation has

been studied in detail from bacteria to mammals, our under-

standing of the respective contribution and the cytosolic aspects

of SRP-independent translocation remains partial. Recently,

three studies have demonstrated that SRP-independent

translocation is more common in mammals than originally

thought (Johnson et al., 2012; Lakkaraju et al., 2012; Shao and

Hegde, 2011). Our findings as to the prevalence of SRP-indepen-

dent translocation in yeast, alongside these mammalian studies,

highlight the need for a better understanding of this lesser-

studied route.

Using hydropathy analysis, we distinguish between yeast

TM-bearing proteins, which are predicted to rely partially or fully

on SRP-mediated translocation, and soluble SS-containing

proteins that are predicted to rely on SRP-independent translo-

cation for the most part. This would imply that, in yeast,

the ‘‘signal recognition particle’’ is, in fact, predominantly

a ‘‘signal-anchor recognition particle.’’ This nonrandom distribu-

tion suggests that structurally diverse secretory pathway pro-

teins have evolved to utilize different insertional routes.

A recent work that systematically identified mRNAs associ-

ated with SRP-bound ribosomes in yeast demonstrated that

this ribonucleoprotein complex is recruited to ribosomes trans-

lating a wide range of nascent secretory pathway proteins (del

Alamo et al., 2011). In agreement with our work, the pool of

enriched SRP-binding mRNAs was predominantly made up



of TM-bearing proteins (67%, 621 proteins). This enriched

group also contained proteins lacking either SS or TM domain

(23%, 213 proteins) and soluble SS-bearing proteins (10%, 91

proteins), which might represent proteins with highly hydro-

phobic SS, such as Kar2. Furthermore, SRP appeared to be re-

cruited in the strongest or more sustained manner to ribosomes

translating TM proteins, as the TM proteins were markedly en-

riched in the SRP-bound versus -unbound fractions. However,

it should be noted that SRP recruitment and SRP dependence

are not synonymous, as the SRP has been shown to bind

ribosomes translating known SRP-independent substrates,

although this recruitment is not fruitful (Plath and Rapoport,

2000). Therefore, our study and that of del Alamo et al. (2011)

pertain to different stages of SRP function.

One prominent protein group—which we uniformly predicted

and later verified—to undergo SRP-independent translocation

is the GPI-anchored protein family. Our results complement

previous findings in the parasite Trypanosoma brucei, whose

numerous GPI-anchored proteins also depend on the SRP-

independent pathway for ER entry (Goldshmidt et al., 2008).

Furthermore, the model yeast GPI-anchored protein Gas1 has

previously been shown to rely on the SRP-independent pathway

(Ng et al., 1996), whereas recent work has demonstrated that

knocking down the mammalian Sec63 homolog attenuates the

translocation of the GPI-anchored prion protein PrP (Lang

et al., 2012). Taken together with our results, this implies that

the dependence of GPI-anchored proteins on the SRP-indepen-

dent machinery might be conserved from yeast, through try-

panosomes, to mammals. This conservation raises the intriguing

question as to why the GPI-anchored proteins have uniformly

maintained their translocational partners throughout evolution.

GPI-anchored proteins contain both an N0-terminal SS and

a C0-terminal GPI-anchoring sequence, which has, until now,

only been studied in the context of its posttranslocational modi-

fication (Orlean and Menon, 2007). However, we now show that

this domain has a preinsertional role in targeting up to 80% of

GPI-anchored proteins to the ER membrane. It remains to be

uncovered how the remaining 20% of GPI-anchored proteins,

as well as other SRP-independent substrates, are actively tar-

geted to the ER membrane.

Our findings highlight that both the SS- and GPI-anchoring

sequences recruit molecular chaperones while in the cytosol,

which facilitates their efficient translocation. Previous studies

suggested that the Hsp70 Ssa1 and also the Hsp40 Ydj1 play

a role in preinsertional chaperoning of SRP-independent sub-

strates, although the generality of this process remained unclear

(Becker et al., 1996; Caplan et al., 1992; Chirico et al., 1988; De-

shaies et al., 1988). Our work demonstrates that the interaction

between Ydj1 and Ssa1 is also important for the translocation

of GPI-anchored proteins, indicating that it might indeed be a

central component in maintaining the preinsertional competence

of a large number of SRP-independent substrates.

Apart from Ydj1, other cytosolic Hsp40s were never studied in

the context of translocation (Walsh et al., 2004). Our work now

maps the in vivo effects of each of the cytosolic Hsp40 proteins

on translocational efficiency, highlighting the importance of Apj1

and Jjj3 in this process. Apj1 has previously been associated

with the propagation of yeast prion proteins (Hines et al.,
2011), a cellular role also shared by Ydj1 (Perrett and Jones,

2008), whereas Jjj3 has been implicated in the biosynthesis of

diphthamide, iron storage, and endosomal recycling (Shi et al.,

2011; Thakur et al., 2012; Webb et al., 2008). It does not appear

that Jjj3 or Apj1 are indirectly affecting the fidelity or efficiency

of translation or translocation, as they do not affect the localiza-

tion of an SRP-dependent substrate (Figure 4C) or the amount

and length of preinserted GFP fusion constructs (Figure 6B).

Neither one of these three Hsp40s is exclusively necessary for

the ER insertion of GPI-anchored proteins, as cell-surface stain-

ing was still apparent in the absence of each Hsp40 (Figures 4A

and 4B). Thismost likely stems from the fact that each ER-target-

ing sequence is recognized by at least two factors, generating

a ‘‘double-safe’’ network for this essential insertional process

in whose absence the cytoplasm is burdened with mislocalized

aggregates.

Highly hydrophobic GPI-anchoring sequences also appear to

recruit the GET pathway, which has been previously character-

ized in the chaperoning and targeting of proteins with one

C0-terminal TM domain—the TA proteins (Favaloro et al., 2008,

2010; Jonikas et al., 2009; Leznicki et al., 2010; Schuldiner

et al., 2008; Stefanovic and Hegde, 2007). These results demon-

strate a striking similarity between the preinsertional machinery

that is engaged by TA proteins and GPI-anchored proteins,

with both families relying on cytosolic chaperones and the GET

pathway for efficient insertion (Rabu et al., 2009). One marked

difference between these two substrates is that GPI-anchored

proteins rely on the translocon for ER insertion (Figures 2A and

S3), whereas TA proteins do not (Kutay et al., 1995). It is still un-

clear how the GET pathway mediates both outcomes. Recently,

mammalian homologs of GET components have been shown

to take part in both the SRP-independent ER insertion of short

secretory proteins and the degradation of untargeted secretory

pathway proteins (Hessa et al., 2011; Johnson et al., 2012). We

could not discern whether the GET pathway also has a role in

the degradation of GPI-anchored proteins in yeast. However,

as isolated GPI-anchoring sequences direct ER targeting in

a GET-dependent manner (Figure 6A), in accordance with this

pathway’s previously established function, it appears that the

GET pathway acts in a targeting capacity for this protein family.

Our results shed further light on SRP-independent transloca-

tion, demonstrating that it is a prevalent mode of ER insertion

in yeast. This pathway requires complex chaperoning and tar-

geting mechanisms for its preinserted substrates, which are

recognized in the cytosol by their hydrophobic sequences.

Several questions arise from this data: are there other ER target-

ing or insertion sequences that have been overlooked? Do other

SRP-independent substrates also undergo ER targeting at the

protein or mRNA level (Palazzo et al., 2007; Prilusky and Bibi,

2009)? What is the complete suite of proteins ensuring that this

essential pathway will function in an accurate and tightly regu-

lated manner?

More generally, so far the various pathways have been

assumed to be different means to a similar end—ER transloca-

tion. However, our findings emphasize that the mechanism by

which a protein translocates into the ER can be tightly con-

served. Such conservation might imply that the various translo-

cational pathways generate unique microdomains specialized
Cell 152, 1134–1145, February 28, 2013 ª2013 Elsevier Inc. 1143



to their insertional clientele, emphasizing the varied and tailored

nature of the translocational space.

EXPERIMENTAL PROCEDURES

Analysis of ER-Targeting Sequences

To generate a comprehensive list of the yeast secretome, the UniProtKB data-

base was queried for proteins from the organism S. cerevisiae (strain ATCC

204508/S288c) that contain a sequence annotation of ‘‘signal peptide’’ or

‘‘transmembrane domain’’ but are not localized to the organelle ‘‘mitochon-

drion.’’ This protein list was cross-referenced with proteins that are known to

localize to the secretory pathway through the yeast GFP library data (Huh et al.,

2003).

Analysis of the yeast secretome-targeting sequences analyzed both the

length and maximum hydrophobicity of potential ER-targeting sequences

within the first 60 aa of each secretory pathway protein, generating a com-

pound hydropathy score by multiplying both of these values. To identify the

length of potential hydrophobic regions, each protein was analyzed via Pho-

bius (Käll et al., 2004) to identify either SS or TM domains. The maximum

hydrophobicity of potential hydrophobic regions was plotted with a sliding

window of 9, 11, or 19 utilizing the Kyte-Doolittle scale. Further information

is available in the Extended Experimental Procedures.

To identify enriched biological themes and functional-related gene groups,

the resulting SRP-dependent, -independent, and combined protein lists

were analyzed via DAVID (Huang et al., 2009) using the yeast secretome

protein list as background.

Yeast Strains and Strain Construction

All yeast strains in this study are based on the BY4741 laboratory strain

(Brachmann et al., 1998). Manipulations were performed using a standard

PEG/LiAC protocol (Gietz and Woods, 2002). General laboratory strains and

strains created in this study are listed in Table S5. Unless otherwise stated,

deletion or hypomorphic allele strains were taken from the yeast deletion

(Giaever et al., 2002) or the DAmP (Decreased Abundance bymRNA Perturba-

tion) libraries (Breslow et al., 2008), respectively. All deletion strains were veri-

fied using primers from within the endogenous open reading frame (ORF).

Further information is present in the Extended Experimental Procedures and

Table S5.

Fluorescence Microscopy

Fluorescence microscopy was performed on yeast cells grown to mid-log

using an Olympus IX71 microscope controlled by the Delta Vision SoftWoRx

3.5.1 software with 1003 oil lens. Images were captured by a Phoetometrics-

Coolsnap HQ camera with excitation at 490/20 nm and emission at 528/38 nm

(GFP) or excitation at 555/28 nm and emission at 617/73 nm (mCherry/RFP).

Images were transferred to Adobe Photoshop CS3 for slight contrast and

brightness adjustments.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and five tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.02.003.
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