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High throughput assays, as well as advances in computational approaches, have recently allowed

the acquisition of vast amounts of genetic interaction (GI) data in several organisms. Since GIs

are a functional measure that reports on the effect of a mutation in one gene on the phenotype of

a mutation in another, they can serve as a powerful tool to study both the function of individual

genes and the wiring of biological networks. Therefore, these data hold much promise for

advancing our understanding of cellular systems. In this review we focus on the methodologies

currently available for using and interpreting large datasets of GIs for functional gene groups

(GI maps), and elaborate on the challenges ahead. In addition, we discuss potential applications

for the study of evolution and disease mechanisms, and highlight the need for comprehensive

integrative analysis to extract the wealth of information found in these maps.

Introduction

The ability to translate the genetic code of an organism to a set

of conceptual frameworks that underlie the function of a

cellular system is the holy grail of systems biology. In order

to attain such a holistic understanding, we must acquire

information on many aspects of cellular organization. This

should include comprehensive data on individual proteins (such

as structure, function, localization, amount and modifications),

their physical association, and the interconnectivity between

cellular functions. This has become feasible during the

last decade with the emergence of high throughput and

computational tools. These allow for the acquisition of

systematic data on various cellular features, which can then

be analyzed to predict the function of single molecules.

Moreover, they can serve to characterize patterns and designs

that would not have been visible from the combination of

small-scale experiments. Merging different types of data

acquired systematically should offer us a way to view the

multi dimensional architecture of the cell.

Methods for measuring genetic interactions in yeast

One type of data that is used to study the relationship between

proteins is their genetic interactions (GIs). A GI is defined as

the effect of a mutation in one gene on the phenotypic severity

of a mutation in a second gene. This is measured by combining

pairs of mutations and quantifying their phenotypes relative to

those of the single mutants. GIs can be either aggravating,

where the double-mutant displays a more severe phenotype

than expected by the phenotype of each single mutant; or

alleviating, where the double-mutant has a less severe

phenotype than expected. The presence of a GI therefore

implies that the processes in which these proteins partake

are somehow connected to each other. The direction and

extent of these deviations report on the form of functional

dependence between the proteins in this specific cellular

context. Since GIs are not dependent on the presence of

a physical association they provide a powerful tool for

ascertaining functional relations.

In recent years, the yeast Saccharomyces cerevisiae has been

extensively used as a model to understand eukaryotic cells

through systematic approaches. Along these lines, two major

tools were developed in yeast to allow acquisition of GIs for a

large number of gene pairs. The first is the Synthetic Genetic

Array (SGA),1,2 in which a yeast deletion strain of interest

(query) can be crossed into a library of deletion strains.

Following sporulation and selection, haploid double-mutant

colonies arise and are scored for colony size. Double-mutants

that display a colony size that is much smaller than expected

are regarded as having an aggravating interaction (synthetic

sick or in the extreme case-synthetic lethal). The second tool is

Diploid based Synthetic Lethality Analysis with Microarrays

(dSLAM),3,4 where deletion strains are created in batch on the

background of a query strain of choice. The resulting

double-mutant strains then compete for growth and their

relative fitness can be determined after several generations

by their frequencies in the culture mixture. As each deletion

strain carries a short unique genetic barcode,5 identification of

each strain can be performed by hybridization of genomic

DNA to a microarray. Strains that have disappeared from

the batch culture are again regarded as having extremely

aggravating GIs. Analysis of the first sets of GI data

demonstrated them as capturing a wealth of information on

many aspects of protein roles within the cell. This led to a hope

to obtain a comprehensive dataset comprised of the entire

repertoire of GIs for all genes in the genome. Since such a
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dataset would not be restricted to pre-chosen groups of genes,

it would allow for unexpected biological observations to

arise.6 However, current methodology still cannot support

this amount of double-mutant creation even in a simple

genome like that of yeast.

Creation of genetic interaction maps in yeast

As would be expected, it has been shown that most random

combinations of gene pairs do not display GIs.2 Thus, in order

to maximize the information content of GI experiments an

SGA based methodology was created, called E-MAPs

(Epistasis Mini-Array Profiles). This approach was developed

on the notion that by selecting functionally related subsets

of genes, it would be feasible to create smaller arrays of

double-mutants while still retrieving the bulk of important

GIs for that group of proteins.7 The first E-MAP focused

on B400 proteins all localized to the early secretory pathway

(and thus expected to be functionally related) and measured

the GIs between them (B80 000 double-mutant combinations).7

This method demonstrated that the lion’s share of interactions

could be obtained through the creation of smaller and more

manageably sized GI maps therefore making it possible to

obtain near complete coverage of whole genome GIs in the

near future by carefully choosing gene subsets. More importantly,

this approach was novel in using computational tools8 to

move from a binary measure of GIs (either ‘‘no interaction’’

or ‘‘synthetic sick/lethal’’) to a quantitative one which results

in a score for the entire spectrum of GIs ranging from negative

(aggravating or synthetic sick/lethal) all the way through to a

positive score (alleviating or buffering/suppressing interaction)

(Fig. 1). This paradigm shift allowed a unique tool for

in-depth analysis of these connected subsets of proteins as it

revealed an entire realm of interactions that were previously

not measured. In addition, E-MAPs integrated essential genes

into the analysis by utilizing a new method to construct

hypomorphic alleles of essential proteins in high throughput,

termed DAmP (decreased abundance by mRNA perturbation).7,9

Additional methods for integrating essential proteins into GI

maps have also been published and include the use of repressible

promoters (Tet-off)10 and temperature sensitive11 alleles. The

ability of E-MAPs to combine essential proteins alongside

quantitative scores dramatically enriched the ability of these

maps to shed light on the underlying cellular structure. In fact

it was shown that analysis of the data found within them

allowed the prediction of protein functions, the arrangement

of proteins into complexes or pathways and the delineation of

functional dependencies between different protein modules.7

Improving data acquisition

Despite the high data content of E-MAPs, there are still many

ways by which they can be made even more informative:

(a) Improving the choice of proteins in each map: this could

be done by relying even more on computational tools to

integrate genomic data (such as sub-cellular localization,

Protein–Protein Interactions (PPI), transcriptional profiles,

homology to studied organisms12 etc. . .) to efficiently choose

the gene groups to be included in the E-MAP. The second

relies on experimentally finding a functional subgroup of

proteins.6 One possible way of doing that is to systematically

screen for all single mutant strains for those displaying a

phenotype of choice (such as misexpression of a gene13).

Creating a GI map for such a phenotypically related gene

groups should enrich the set in interactions since they all affect

a process of interest.14 Moreover, the emerging map would be

able to give clues as to the workings of that specific cellular

function. This approach should also be useful in more complex

organisms where genomic data is less available. Optimally,

both methods should be integrated to enable us to capture

both inter and intra process related information.

(b) Increasing the variability of GI measurements: most GI

maps to date have focused on a single condition or a comparison

of two.15 However many interactions may be context-dependent.

Therefore future efforts should aim to measure the same

double-mutant strains under a variety of different growth

conditions. This should allow us to understand how cells

respond to cellular stimuli and how dynamic the protein

networks are under those conditions.16,17 Variability could

also be uncovered by the use of multiple alleles (such as

hypomorphs, specific splice forms, point mutations and gain

of function alleles) instead of only complete deletions for each

protein. Previous use of alleles in GI maps has demonstrated

that various alleles can reveal different functional properties of

a protein.18 Moreover, use of downregulated alleles instead of

complete knock-outs could help alleviate some of the back-

ground phenotypes that often occur when an entire protein is

eliminated from the genome.

(c) Refining the scoring: methods for improving the quality

and sensitivity of GI data by more accurate measurement

systems are prevailing.9,15 Using these it should be possible to

quantify more interactions, as well as more accurately

define them in terms of directionality and severity.14,19

Quantitative scoring of interactions has many implications

on the amount of information that can be gleaned from GI

maps, therefore it is essential to consider the method of scoring

used. The major theoretical question is which neutrality

function to use. A neutrality function is the description of

the double-mutant phenotype that represents no interaction

and is necessary to define the extent of all other found GIs.

Two options have been proposed; the first is a multiplicative

function, which predicts that the double-mutant fitness

(the exponential growth rate of the mutant strain relative to

the WT) is the product of the corresponding single-mutant

fitness values; while the second is a minimum neutrality

function, which defines non-interacting mutations when the

double-mutant yields the fitness of the less-fit single mutant.20

Since current GI maps are utilizing additional phenotypes

other than fitness, it is becoming more challenging to define

an optimal neutrality function and this should be given

much thought as it may affect the calculated assignment of

GIs. This would be especially important in attempts to join

together data from different experimental systems. Although

most GI data to date is being calculated on the basis of a

multiplicative neutrality function, it should be taken into

consideration, that using similar raw data one could

potentially obtain different views of interaction networks

depending on the type of mathematical model used to compute

the presence of GIs.20
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(d) Extending the analysis to higher combinatorial gene

perturbations such as triple or quadruple knockouts.2

This may be extremely useful in mammalian systems where

large groups of homologous proteins exist and also where

combinatorial addition of RNAi molecules should be easier to

implement.

From method creation to extensive utilization

Although many improvements can still be made, it is now well

established that quantitative measures of GIs between dense

subsets of genes contain an enormous amount of information

regarding many aspects of cellular organization. Therefore,

there is an ongoing effort to create them for as many gene

subsets as possible. To date, E-MAPs have been created

for the secretory pathway,7 chromosome biology,3,18 RNA

processing,21 phosphorylation networks,22 endosomal functions

(T. Walther, personal communications) and mitochondria

(J. Weissman, personal communications) with more

constantly being created. Recently this methodology has

started spreading to additional single cell organisms such as

Schisosaccharomyces pombe23–25 and Escherichia coli.26,27

Moving from single cells (either vertebrate cells in culture or

microorganisms) to complex multi-cellular organisms is not

a trivial task. This is because growth rate is not a good

phenotype to assay and because any other phenotype measured

is a result of a complex process of cellular differentiation and

communication contributed to by an enormous number of

variable cellular networks. Current GI interaction maps in

whole organisms such as C. elegans28 have used fitness

as a readout, however this is not applicable in higher

vertebrates and for gene sets whose function does not impact

fitness. Moreover they may be hard to interpret functionally

due to the myriad of individual affects that contribute to it.

To this end we are far from being able to truly understand the

meaning of any single GI in a whole animal, though often,

specific GIs extracted from experimental model systems can be

used to infer functional dependency.

It has recently been shown that GI maps can be made

generally applicable by the use of fluorescent reporters instead

of growth rate to measure interactions.14 This was done by

using a green fluorescent protein (GFP) under the regulation

of a stress induced enhancer (specifically, the Endoplasmic

Reticulum Unfolded Protein Response). The level of GFP was

then used as a measure of protein misfolding in the secretory

pathway in either single or double mutants and as a basis

for calculating GIs that does not require growth rate

measurements for fitness calculations.14 Using such

fluorescent reporters alongside silencing techniques (such as

si/shRNA) to create double perturbations, it should now be

possible to generate GI maps in higher organisms. Indeed,

some ground breaking studies have all ready been published in

Fig. 1 Creating Genetic Interaction (GI) maps. In order to generate GI maps it is first necessary to create double mutant strains and measure their

phenotype. Using mathematical models (such as the multiplicative model presented here—see text for others), it is possible to calculate the GI

between each pair of genes by its deviation from the expected double mutant phenotype (top row). This assignment gives rise to a GI pattern for

each gene deletion, which serves as its functional ‘‘finger print’’ (middle row). These functional patterns can then be hierarchically clustered

according to statistically significant similarity (bottom row). The emerging GI map can be analyzed on many levels.

This journal is �c The Royal Society of Chemistry 2009 Mol. BioSyst., 2009, 5, 1473–1481 | 1475
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Drosophila melanogaster12,29 and Caenorhabditis elegans28,30,31

and there are efforts to set up such protocols in human cell

lines (A. Kimchi, J. Weissman, personal communications).

This rapid accumulation of GI data sets is now shifting the

bottleneck from data generation to data analysis.

Data analysis

Creating functional predictions based on hierarchical clustering

methods

One of the big challenges of high-throughput GI maps is how

to translate the quantitative trait of a GI to a biological

understanding. Analyses of GI maps have shown that each

gene can have a large number of interactions.2,7 While we do

not yet know of a systematic way for explaining every GI

observed, it is possible to utilize the spectrum of GIs for each

query gene as a predictive tool for analyzing its molecular

function. This is because the distinct pattern of interactions

displayed by each gene represents the effect of its deletion on

the cellular environment and thus can be used as its compound

phenotype. Deletions of two proteins functioning in the same

complex or pathway would be expected to have a similar effect

on the cell and therefore would generate similar patterns of

GIs. Such similarities are easily revealed by the use of

two-dimensional hierarchical clustering of the GI patterns.

From these similarities it is possible to predict functional roles

of proteins.8 One striking example is that of the clustering of

the glycosylation genes in an E-MAP of the early secretory

pathway.7 The clustering of the glycosylation genes not only

put all of the genes in the pathway together (Fig. 2, top), but

also differentiated between two sub-clusters (Fig. 2, bottom

right) corresponding to the distinct functions of these proteins

(Fig. 2, bottom left).8

Examples of the power of hierarchical clustering to reveal

modules are ample and can be found in every GI map created

to date. When tight clusters contain uncharacterized or poorly

characterized proteins alongside well known ones, it is possible

to predict their function as was demonstrated by the finding

that Rtt109 is the founder of a novel class of histone

acetyltransferases that acetylate lysine 56 on histone H3 in

an Asf1-dependent manner;18 and the discovery that Sem1

functions in three distinct complexes which link mRNA

export, splicing and the proteasome.21 When all proteins in

the cluster are unknown, it is still possible to define new

complexes, however uncovering their function can be more

labor intensive. Examples include the characterization of the

GET complex7, and only later the discovery of its role in

insertion of tail anchored proteins into membranes;14,32 and

the discovery of the novel EMC complex, a 6 member

transmembrane complex in the ER14 whose function is still

unknown. Carefully studying the specific interactors of

proteins can also give insight into an unknown proteins

function even in the absence of a coherent cluster, as was

shown by the identification of Phs1 as the very long-chain fatty

acid dehydratase;7,33 and the finding that SWR-C-mediated

incorporation of Htz1 into chromatin is dependant on the

function of Glc7/Bud14.22 Although predictions are plentiful,

they still require manual sifting through the large number of

current GI maps and depend upon a basal knowledge of

protein function for a substantial number of the proteins in

the map. In addition, they work mostly for proteins that share

some of their functions or that are in a coherent complex or

pathway. To extract functional predictions for proteins in an

automated manner, and mainly to reveal key properties in the

molecular networking topology, higher-level analysis methods

are necessary.

Defining protein modules

In an attempt to move from a two-dimensional view of GI

maps to the real world of multi dimensional depictions it is

necessary to go beyond hierarchical clustering. The first major

use of GI data to recreate a model of the higher level

organization of proteins into functional modules came from

the study of metabolic networks.34 By using theoretical data

that contained both positive and negative measures of GIs, it

was shown that proteins that function together in a coherent

group share the same type of GIs (either positive or negative)

towards other protein-groups. This property was called

monochromaticity and could be uncovered using the PRISM

algorithm, which defines protein modules by the tendency of

proteins to be monochromatic towards other proteins.34 The

idea of monochromatic interactions later served as the basis

for many (if not all) of the computational approaches to define

networks (see below).

Since early GI maps did not contain quantitative measures,

the first algorithms for analyzing non theoretical/measured

data could only use the presence of aggravating interactions

(synthetic sick/lethal) for analysis. However, based on the

notion of monochromaticity, it was still possible to define

functionally coherent groups of proteins based on a Congruence

Score.35 This score organizes genes as being in a single

Fig. 2 Using hierarchical clustering methods to predict protein

function. An example of the power of two-dimensional hierarchical

clustering to uncover functional modules using GI data. Shown is a

cluster of 7 genes from an E-MAP of the early secretory pathway (top).

All 7 genes are involved in the endoplasmic reticulum glycosylation

pathway. Based on the lack of GIs between several of the genes

(bottom right), the algorithm could distinguish two subsets of the

proteins—the ALG genes involved in the linear pathway (bottom left)

for creation of the glycan chain and the OST genes involved in transfer

of the chains to the nascent polypeptide.
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complex or pathway, if they share synthetic lethal partners.35

For example, identification of synthetic lethal inter-

actions between mitotic exit network (MEN) complex and

components of the Sin3/Rpd3 histone deacetylase complex

allowed the definition of two protein modules. Moreover,

the presence of an aggravating GI between them suggested

a novel function for Sin3/Rpd3 in the promotion of

mitotic exit redundantly to MEN.35 Later, similar algorithms

were created for quantitative measures (both positive

and negative) of GIs. One such is the COP score which

measures the extent of similarity (correlation) between the

GI patterns of two deletion strains (as in a Congruence

Score) but also uses the GI between them to predict their

functional relatedness.8 In a COP score, groups of proteins

defined as functioning in a coherent manner have both

a high correlation between their GI patterns and positive/

buffering interactions between them.8 Using the additional

measure of the GIs between genes can help uncover complexes

of proteins even in cases where the GI pattern is not identical

(which may be due to both biological diversity and the

inherent noise in measurement of GIs). Such methods for

uncovering complexes and pathways give rise to many more

functional predictions and override some of the problems

associated with clustering alone.

Hierarchical clustering of entire profiles results in the

assignment of each gene into only one cluster, thus losing

the ability to uncover the pleiotropic functions that proteins

often have. To overcome this over-simplification it is possible

not to focus on the entire spectrum of GIs for a given deletion

strain, but on recurring ‘‘signatures’’, meaning short repeated

motifs in the GI profiles. Each signature may arise due to one

aspect of the query genes function and would therefore

be shared with other proteins that have a similar role.

The concept of signature algorithms, initially demonstrated

for analysis of transcriptional profiles,36 was used for GI maps

by construction of the Local Coherence Detection (LCD)

algorithm.37 This algorithm permits assignment of individual

genes to multiple clusters, thus uncovering more than one

function. An example of the power of this method comes from

their analysis of Spf1. The hierarchical clustering of Spf1 with

Sec66, suggested its involvement in the import of proteins into

the ER.38 However, the LCD algorithm also associated Spf1,

as was experimentally proven, with calcium homeostasis,

glycosylation, ER quality control, lipid biosynthesis and

protein translocation.37 An additional algorithm that builds

on non conventional clustering (CHAMP), works by optimizing

clusters of proteins which share GI patterns such that the

predicted modules interact to form a network similar to

those expected in a cellular context (N. Friedman, personal

communications).

Novel approaches for organizing proteins in a given GI map

into modules are to use data driven methods that are model

independent. Recently a complexity metric has been shown to

be useful in analyzing published datasets in the absence of any

prior knowledge as to the function of genes within them.39

This should prove extremely useful in analysis of GI maps

in higher organisms or less characterized ones, where information

on individual protein’s functions may be more sparse than in

the yeast.

Integration of proteomic information

In recent years there has been a flood of PPI data which comes

from several sources, including affinity purification followed

by mass spectrometry,40,41 two hybrid methodologies42,43 and

bi-molecular complementation.44 Since GIs report on a

phenotypic consequence for the loss of two proteins which

are often related by non-physical means (such as protein

modification, transfer of substrate or parallel pathways), the

overlap between GI and PPI data can be rare.2,45 Thus,

merging these two vast datasets is essential for reconstructing

the most precise view of molecular networks (for a review

see ref. 46).

Merging these two datasets has several roles. In cases where

GIs exist for proteins all ready annotated as being within a

complex, they can allude to the function of the complex.

Additionally, GIs can be used to elucidate the structure of

the complex.47 This can be by: (a) differentiating between

complexes with a single coherent function versus those in

which different members may have additional functions.

This can be done by use of algorithms such as the COP score

(see above).7,8 (b) Assigning complex modularity. For example

study of the large mediator complex (made from more than

twenty proteins and four functionally distinct subunits)

showed that GIs for this complex could define the functional

dependency between the head, tail, middle and CDK8

submodules as well as their interactions with other proteins

outside of the complex.48 In cases where alleviating GIs exist

for proteins with a similar pattern of GIs that do not display

PPIs this could be a method for predicting a complex that

could not be seen by PPI detection methods due to technical

issues (such as: transient interactions, posttranslational

modifications22 and transmembrane complexes that are more

difficult to pull down for technical reasons).

Reciprocally, the finding that two proteins share a PPI can help

explain the presence of a GI between two previously unconnected

proteins. An example for how this can be done systematically

comes from a novel software tool termed ANAT49 (Advanced

Network Analysis Tool). This analytical platform allows the user

to plug in a group of proteins (for example those with

unexplained GIs) and receive a model of the physical connectivity

between them. The program provides a selection of algorithms50

for predicting the most probable network of physical interactions

that connects the proteins by using PPI data from previously

published datasets. Since it allows the uncovering of paths that

are indirect it allows the interpretation of GIs and creation of

functional predictions based on the measured GIs.

To tap into the important information found by integrating

these two datasets, several algorithms have been published. By

integrating PPI data from affinity purification alongside GI

data from a chromosome biology GI map,51,52 these methods

enabled not only the high-precision identification of new

protein complexes, but also the addition of previously unknown

proteins to known complexes and the characterization of their

interconnectivity. These combined analyses also created new

insights as to the nature of cellular complexes. For example, it

was shown that aggravating interactions amongst complex

members usually occur between non-essential subunits of

essential complexes.51
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The requirement for PPI data limits such approaches to

protein sets and organisms where such data exists, and may miss

many functional pathways that are not mediated by protein

complexes (e.g., metabolic pathways). However an enormous

variety of high throughput/genomic/proteomic datasets exist

in most model organisms such as transcriptional,53,54

translational,55 DNA-protein interaction data56,57 and phenotypic

data.16,17 It would therefore be important to create algorithms

that integrate a wide variety of data with GI maps.58 Such

integration could be performed in a stepwise fashion, by first

defining protein complexes and then predicting their function

based on the additional systematic data (Fig. 3) or by novel

algorithms for merging all the different data to build a

conceptual framework of the relevant proteins, not only in

terms of molecular function and physical connection, but

rather as a deep view into their cellular context. Indeed initial

efforts to do that have combined GI data alongside PPI data,

protein–DNA interactions, and either metabolic networks59 or

sequence homology and expression correlation.28,47 Such

integration methods in yeast, have only been performed to

date on a relatively small set of binary synthetic sick/lethal

interactions and should be much more powerful when utilized

to study the current available datasets with quantitative

measures of both negative and positive interactions as well

as a much larger repertoire of deletion strains.

An additional type of data that has been used in conjuncture

with GI data is the growth rate of single mutant strains under

a variety of stress conditions. When this data was combined

with GI data, it was shown that GI data, although recorded

under only a single condition, could report on a broad

spectrum of cellular conditions.52 An interesting observation

that arises using such stress data is that as many as a third of

the aggravating interactions in current GI maps can be

attributed to one gene buffering the effect of a cellular stress

induced by the perturbation of another gene (N. Friedman,

personal communications).

Initial analysis of GI data focused on making biological

predictions on the function of proteins or their organization

into modules. These findings, however, only represent the tip

of the iceberg, revealing a glimpse of how much information

can still be extracted. It is possible that with more sophisticated

analysis techniques GI maps hold the information to create a

model of the cellular environment. Retrieving this information

requires going beyond simple analysis into complex computational

methods and more profound analytical tools in the search of

the biological meaning ‘‘encoded’’ in each pixel of these maps.

Genetic interactions and evolutionary constraints

One of the unique consequences of sexual reproduction is the

creation of novel combinations of gene alleles, which may also

be mutations, that did not exist in either parental strain.

Understanding how these novel combinations act together to

affect the phenotype (i.e., what are the GIs between the

different alleles/mutations), may allow better modeling of the

evolutionary forces driving the emergence of this reproductive

Fig. 3 Integrating various data sources to create a holistic view of cell architecture. Local areas of ‘‘monochromaticity’’ in GI patterns of clustered

genes (top left) can be translated into protein networks (top middle). By integrating these networks with available PPI data it is possible to create a

model of pathway and complex architecture and their interconnections (bottom right). Finally, by integrating all other available genomic/

proteomic scale data it should be possible to obtain a model representing the true dynamics of the network in a given cell type (bottom left).
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mode.60 Simlarly, GI data in specific organisms could enlarge

our ability to estimate their robustness (how many changes

can occur without affecting phenotypic consequences) or their

evolvability (their ability to support complex changes which

occur by multiple genetic perturbations).61–63 For example:

networks of proteins that exhibit buffering interactions could

allow for genetic variability while maintaining phenotypic

robustness. This would support complex changes in genotype

sometimes necessary for dramatic evolution of phenotypes.62

In contrast, aggravating GIs could help ‘‘purge’’ the genome

of deleterious mutations more rapidly than by random drift

alone. Studies aimed at understanding the evolution of

genomes often try to estimate the rate of mutation for an

individual gene. However, the ideas above rely on the notion

that certain gene pairs or alleles must evolve in parallel in

order to sustain viability of an organism. Allowing for such

cases we can find non-stereotypic evolution such as that of

‘‘hub’’ proteins that display GIs with many other proteins.

These have a more cardinal effect on fitness than less

connected genes2,64 and have changed very little through

evolution,2,64,65 making them even more conserved than essential

proteins.66,67 Thus GIs can be used to start understanding the

evolutionary constrains for evolving complex networks.

GIs can also be used to define the evolutionary relations

between proteins. For example by comparing GI patterns it is

possible to uncover the extent of functional redundancy

between duplicated genes (paralogs). Such an analysis in yeast

found that complete redundancy is extremely rare.66 However,

in the few cases where true or even partial redundancy is

present it is easily detected by the overlapping pattern of

GIs.66 Another use of GIs is in the definition of orthologs

(homologous genes in different organisms that share the same

function). Often such proteins are hard to determine based on

sequence or even structural homology alone due to extensive

divergence between distantly related organisms or the presence

of multiple homologs by sequence. However, true orthologs

should have a similarity in their GI patterns or share their

location within the hierarchy of GI networks.

More globally, influences of engineering on biology have

pushed towards the characterization of general ‘‘design

principles’’.68 Using GI data, this could be achieved by

comparing GI patterns from various organisms to reveal

recurring network motifs.69 Such motifs could create insights

into the considerations for maximizing fitness by using specific

solutions to perturbation. For example, comparing between a

chromosome biology E-MAP in S. pombe and S. cerevisiae

revealed that GIs within complexes as well as the genetic

profiles of physically associated pairs of genes were more

conserved than GIs between complexes. This suggests that

the interdependancy between functional modules is more

easily re-wired than the re-creation of a protein complex.23

Using genetic interactions to study disease

mechanisms

GIs can be used for more than just studying the underlying

principles of a normal cell. Using GIs in cell culture we can

start to probe multi-genic phenotypes/diseases such as

cancer,64,70 viral resistance and even cystic fibrosis (CF)71

(which is now acknowledged as being multi-genic).

These cellular states all exhibit phenotypes that rely on

multiple factors that confound simple genotype–phenotype

relationships. In these cellular contexts, a single mutation

can be tested for its GI pattern against the entire genome by

using siRNA/shRNA libraries. The resulting ‘‘hits’’ would be

good candidates to act as ‘‘modifiers’’ of the phenotype of the

query mutation. Such screens are performed routinely to date

and should soon become widespread enough to allow rapid

accumulation of data for many genes and gene-subsets.

It would be interesting to compare results from such a screen

to more traditional methods that have, in the past, uncovered

functional relationships between disease genes in human

subjects (such as association studies or mapping of quantitative

trait loci (QTLs)). After uncovering modifier genes by any

given method, their function can be studied by using

combinatorial silencing to create GI maps. The resulting GI

maps would shed light on the way by which the network of

proteins, found in the initial screen, function together or in

parallel to promote or harness the phenotype of interest. Both

of these avenues should contribute to our understanding of

disease progression, which is an essential path to the development

of targeted drugs. Moreover, knowledge regarding the genetic

gene pairs that aggravate or alleviate the phenotype of the query

cell can suggest appropriate drug combinations that may inhibit

or rescue the cellular systems. For example, selecting drugs that

will synergistically affect cell viability via their affect on cell

targets that are themselves synthetically lethal can make the

required dose of each drug lower, thus improving efficiency of

treatment relative to negative side effects64 (Fig. 4).

Fig. 4 Using systematic screens followed by GI maps to study disease

mechanisms. A possible procedure to utilize high throughput silencing

screens alongside GI maps to elucidate the biological mechanism under-

lying multi-genic disorders. Using current silencing libraries it is possible

to start with a query cell and find all of the genes that act as ‘‘modifiers’’

of its phenotype (by either aggravating or alleviating a measured

phenotype). The resulting hits could then be studied independently for

their role in modifying the disease or as drug targets or silenced in

combination to create a GI map. The construction of such a map should

shed light on the role of these proteins in the cell and their role in

modifying the phenotype, again contributing to drug development.
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Perspective

Less than a decade after the invention of methodologies for

creating large, systematic maps of GIs we are entering an era

where such datasets are widespread. It is now time to create

analytical tools to extract the immense amount of information

they contain about the structure and function of cellular

networks. In addition, we still lack robust algorithms to

integrate GI data with other types of high throughput data.

This is not a trivial problem as each type of biological data is

assigned a different scoring method with matching units, and

holds a different biological meaning. Moreover, even within

the same type of data, such as GIs, datasets could differ

based on the conditions in which they were measured or the

phenotype followed and, in higher organisms, in which cell

type and in which developmental stage they were assayed. For

this reason, integration and representation into true under-

standing of the underlying system remains the next frontier.
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