
System-level analysis has revolutionized cell research 
by enabling a conceptual shift from the focus on a 
single particle, complex or pathway to a holistic view 
of all cellular components and their dynamic crosstalk. 
The era of bioinformatics and advanced technologies 
brought about a diversity of large-scale methodologies 
that enable such systematic measurements of the vari-
ous cellular molecules — such as DNA (genomics)1,2, 
mRNA (transcriptomics)3,4, proteins (proteomics)5–9, 
post-translational modifications (such as glycomics10,11 
and phosphoproteomics12,13), lipids (lipidomics)14–16 and 
small molecules (metabolomics)17–19 — as well as their 
functional20,21 and physical interactions22. Endeavours 
to combine these data reveal unappreciated modularity 
and flexibility in biological organization23.

Cells must constantly integrate external and internal 
signals to recalculate ever-changing circumstances and 
respond appropriately. How such adaptation occurs is 
not yet completely understood for any perturbation. 
Therefore, investigating the spatial and temporal altera-
tions of cellular components is crucial for a mechanistic 
understanding of living systems. With the advent of 
microarrays, and later deep sequencing, such analyses 
have been extensively undertaken for RNA expres-
sion profiles3,24. These efforts resulted in a large gain of 
knowledge of the transcriptional regulation dynamics 
in many organisms. However, proteins carry out most 
cellular functions. Although it is often assumed that 
mRNA levels reflect the abundance and activity of 
their respective proteins, systematic quantification 

of proteins shows, in almost every organism that has 
been examined so far, that transcript abundance is 
not a good predictor of protein level either in steady 
state or in response to stress23,25–27. In fact, it has been 
shown that proteins that are crucial for the response to 
environmental stimuli often show no altered regulation 
at the mRNA level21; thus, they most probably undergo 
post-translational regulation23,25–30. Several evolution-
ary studies comparing data from humans, chimpanzees 
and rhesus macaques have shown that levels of protein 
expression seem to be much more tightly conserved 
across species than are levels of mRNA transcripts31–33. 
Stemming from this observation is the idea that pro-
tein levels are tightly controlled for functional conse-
quences, whereas the regulation of mRNA levels has 
evolved with less constraints34. Indeed, the cellular 
protein pool is maintained by a dynamic and complex 
balance of interconnected post-transcriptional and 
post-translational processes: localization, processing 
and degradation of mRNAs, as well as the translation, 
localization, modification and degradation of the pro-
teins themselves23 (FIG. 1). The biggest challenge in the 
systematic analysis of proteins is therefore to obtain an 
accurate assessment of the rates and determinants of 
each of these regulatory steps, as well as their relative 
contribution to protein abundance. Hence, overcom-
ing technical barriers to obtain accurate and dynamic 
measurements of proteins should give rise to an 
increasingly realistic image of how a biological unit 
functions.
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Abstract | During the lifetime of a cell proteins can change their localization, alter their 
abundance and undergo modifications, all of which cannot be assayed by tracking mRNAs 
alone. Methods to study proteomes directly are coming of age, thereby opening new 
perspectives on the role of post-translational regulation in stabilizing the cellular milieu. 
Proteomics has undergone a revolution, and novel technologies for the systematic analysis of 
proteins have emerged. These methods can expand our ability to acquire information from 
single proteins to proteomes, from static to dynamic measures and from the population level 
to the level of single cells. Such approaches promise that proteomes will soon be studied at a 
similar level of dynamic resolution as has been the norm for transcriptomes.
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With the emergence of enabling technologies (TABLE 1), 
the past few years brought about the first systematic 
measurements of proteins under basal growth condi-
tions5,7,9,35,36 (described below). However, it is obvious 
that these studies are only the ‘tip of the iceberg’, and that 
important information will be obtained from studying 
protein dynamics in response to fluctuating cues, namely 
growth conditions, external factors or genetic mutations. 
Our Review provides an overview of the technological 
advances in different strategies to measure various aspects 
of protein regulation in a systematic manner. We discuss 
three major developments that such new approaches 
facilitate: the move from single-protein, low-throughput 
studies to whole-proteome, high-throughput analyses; the 
shift from population-level proteomic analyses to studies 
at single-cell resolution; and the expansion of the pro
teomics scope from a single-time point, static view of the 
cell into a complex and dynamic vision.

Measuring protein abundance
Measuring the abundance of all cellular proteins is 
important for a true representation of the cellular milieu. 
Moreover, by comparing protein to mRNA levels under 

various conditions it is possible to detect both post-
transcriptional and post-translational regulation. Several 
approaches enable the acquisition of such information.

Population-level approaches. Immunodetection by west-
ern blot analysis (TABLE 1) has been used to measure the 
abundance of the yeast proteome. For this purpose, a 
specialized collection of yeast strains (library) was con-
structed, in which each open reading frame was fused to 
a tandem affinity purification epitope36 (TAP epitope) in its  
native chromosomal context and under the control of 
its endogenous promoter. Through immunodetection  
of this common tag, a census of the repertoire and abso-
lute levels of all proteins expressed during logarithmic 
growth in a standard laboratory medium was obtained 
(covering 80% of the proteome). Levels of proteins, 
many of which were detected for the first time, ranged 
from fewer than 50 copies to more than 106 molecules 
per cell36. These results imply that the remaining 20% of 
the proteome is only expressed under specific conditions 
(although the lack of detection might also have been due 
to the detection threshold or problems with the tagging 
procedure). In humans, in whom tagging of all genes 

Figure 1 | Modes of post-transcriptional regulation to control the functional protein pool of the cell.  The synthesis 
of a fully mature and functional protein according to its encoding mRNA transcript is a complex process of interconnected 
nodes of regulation. To maintain an appropriate level of functional proteins in the cell, several major tiers of regulation 
exist — the translation of the nascent peptide, its correct folding and maturation. Maturation includes the creation of 
physical interactions with additional protein partners, proper compartmentalization within the cell and the acquisition of 
molecular modifications such as phosphorylation and ubiquitylation. To maintain the protein pool at the appropriate level 
according to the inputs received by the cell, a tightly regulated crosstalk between all of these processes must occur. 
Excessive amounts of protein or aberrant proteins can be degraded. 
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is difficult, a heroic venture is being undertaken by the 
Human Protein Atlas project37. This project has been set 
up to create affinity-purified antibodies specific for every 
protein in the human genome and currently covers more 
than 80% of all human protein-coding genes. These anti
bodies are then used to systematically obtain information 
on changes in the level of protein expression in various 
tissues and cancer cell types, as well as information on 
the subcellular localization of proteins37,38. An important 
use of this database is its integration with additional data 
sets, including transcriptomic data from of 27 tissues 
and 44 cell lines39. In addition, these antibodies can be 
used as capturing agents that, in combination with mass 
spectrometry detection (immuno-SILAC (stable isotope 
labelling with amino acids in cell culture)), enrich target 
peptides and substantially reduce sample complexity40.

However, immunodetection has many disadvantages 
for use in systematic analyses. First, it requires either the 
generation of a genetically modified collection of pro-
teins or the production of antibodies specific for each 
protein; both approaches are expensive and time con-
suming. Therefore, realistically, this method is probably 
not applicable to many model organisms. Second, the 
measurement and quantification of proteins are labori-
ous, which makes it difficult, even for studies in yeast, 
to expand the immunodetection methodology to meas-
ure protein abundance at multiple time points or under 
many different conditions. Third, genetic modification 
may interfere with protein function, localization or sta-
bility, and a non-generic antibody can differ in affinity 
and specificity, leading to the lack of homogenous data. 
Fourth, detection of proteins in a whole-cell lysate means 

Table 1 | Common assays used in proteomic studies

Assay Application Advantages Disadvantages

Antibody labelling by 
western blot analysis

•	Abundance
•	Degradation rate (by cycloheximide chase)

Does not require a special 
infrastructure

•	Laborious
•	Depends on genetic tagging
•	Low sensitivity to small changes
•	Population-level resolution
•	Single time point measurement

Antibody labelling by 
immunohistochemistry

Abundance Does not require a special 
infrastructure

•	Laborious in terms of genetic 
tagging or production of an antibody 
specific for the native protein

•	Fixation can distort readout
•	Single time point measurement
•	Cross-reactivity between different 

proteins and isoforms

Mass spectrometry •	Abundance
•	Post-translational modification (by 

purification or enrichment of the 
modification of interest)

•	Localization (by subcellular fractionation)
•	Protein–protein interaction (by affinity 

purification of complexes)

•	Can be applied to any organism
•	Sensitive
•	Quantitative

•	Requires a special infrastructure
•	Sensitive to sample preparation 

artefacts
•	Currently only functions at 

population-level resolution

Flow cytometry •	Abundance
•	Half-life (by cycloheximide chase or tFT)

•	Quantitative
•	Single-cell resolution

•	Requires a special infrastructure
•	Depends on genetic tagging for 

proteome-wide measurements
•	Low sensitivity
•	Single time point measurement

Microscopy •	Localization
•	Abundance
•	Half-life (by tFT or bleach–chase)
•	Protein–protein interaction (by split-YFP 

assay)

•	Quantitative
•	Single-cell resolution

•	Requires a special infrastructure
•	Depends on genetic tagging for 

proteome-wide measurements
•	Single time point measurement for 

proteome-wide measurements

Microfluidics •	Localization
•	Abundance

•	Quantitative
•	Single-cell resolution
•	Enables dynamic measurements 

in a controllable medium

•	Requires a special infrastructure
•	Depends on genetic tagging for 

proteome-wide measurements

Deep sequencing Translation rate (by ribosome profiling) •	Readily applied to any organism
•	Parallel measurements in single 

experiment

•	Requires a special infrastructure
•	Population-level resolution
•	Single time point measurement

Protein microarray •	Protein–protein interaction
•	Post-translational modification

Readily applied to any organism •	Requires a special infrastructure
•	Population-level resolution
•	Proteins lose subcellular 

compartmentalization

Automated growth rate 
analysis

•	Genetic interaction
•	Protein–protein interaction (by yeast 

two-hybrid screen, split-DHFR assay or 
split-ubiquitin assay)

Does not require a special 
infrastructure

•	Depends on genetic tagging
•	Population-level resolution

DHFR, dihydrofolate reductase; tFT, tandem fluorescent protein timer.
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Shotgun proteomics
Techniques for the parallel 
identification of all proteins in a 
sample using high-performance 
liquid chromatography followed 
by mass spectrometry.

that no live measurement can be carried out. Fifth, anti-
body measurements are not reliably reproducible and 
are not sensitive enough to detect minor differences in 
protein concentration or low-abundance proteins. Sixth, 
antibodies can cross-react not only with different pro-
teins but most importantly with different isoforms of 
the same protein. Finally, whereas immunochemistry 
enables studies at single-cell resolution in principle, 
western blot analysis is, by definition, only suitable for 
population-level studies.

An alternative and powerful approach, which over-
comes many of these disadvantages of immunodetection, 
is mass spectrometry, as it does not involve the creation 
of genetically tagged proteins or specific antibodies 
(TABLE 1) (reviewed in REFS 41–44). Improved method-
ologies using advances in computational proteomics, 
instrument performance and sample preparation enable 
the robust recognition and quantification of nearly all 
endogenous proteins with a single experiment. These 
approaches have already been demonstrated for several 
types of tissues, organisms and organelles following 
purification44–53. For example, the levels of all expressed 
proteins in haploid yeast cells were measured relative 
to their diploid counterparts by mass spectrometry6. 
In these extensive measurements, 4,399 proteins were 
identified and quantified. The measurements showed 
high levels of agreement with other methods (such 
as western blot analysis of the TAP epitope library36 
mentioned above and flow cytometry of the Yeast GFP 
Fusion Localization Database9 mentioned below). The 
advancements in this field and the current simplicity 
of the entire workflow make mass spectrometry-based 
shotgun proteomics also applicable for studying proteome 
dynamics in response to stress, such as heat shock54, in a 
time-dependent manner. This method can also be used 
to study evolutionary questions. For example, quantita-
tive trait locus (QTL) analysis for protein measurements 
of more than 78 yeast strains revealed complex interac-
tions between independent genetic loci, which suggests 
tight maintenance of stoichiometry for functionally 
related members of a pathway47.

Due to the complexity of the human proteome, mass 
spectrometry approaches are still struggling to be as com-
prehensive as in more simple organisms. Near-complete 
coverage of the proteome can be obtained, as shown 
by recent studies in which common human cancer cell 
lines were used to identify more than 10,000 different 
proteins in a single experiment49,52. According to com-
parisons with transcriptome data, these measurements 
are close to being a complete count of the human pro-
teome. However, the shift from cell lines to tissue sam-
ples is not trivial; so far, there are only a few in‑depth 
proteomic studies with high coverage in tissue samples. 
Examples include the investigation of tissue-specific 
phosphorylation in mouse tissues55, the characteriza-
tion of the secretome of activated immune cells45 and 
the identification of the proteins expressed in an entire 
human colon tumour56. Although they are very robust, 
mass spectrometry approaches have limitations in 
terms of both sample preparation requirements and 
the need for large amounts of clean starting material.  

Additional difficulties are in the detection of low-
abundance, very short, very hydrophobic or very 
hydrophilic peptides. Current efforts are directed at over-
coming technical barriers and reaching higher sensitivity 
and coverage, as well as at gaining meaningful functional 
interpretation (reviewed in REF. 41). These technological 
advances are now rapidly being developed and suggest 
that sensitive, accurate and complete proteome measure
ments by mass spectrometry will be possible for any bio-
logical tissue in the near future41,57. For example, mass 
spectrometry-based high-resolution isoelectric focusing 
(HiRIEF) enables whole-proteome coverage in plants58, 
mice and humans59. Integration of these data with 
six‑reading-frame translation (6FT) of the genome facili-
tated the definition of novel coding loci59. Drawbacks of 
HiRIEF are the necessity for costly instrumentation and 
expertise. Although the first attempts to achieve single-
cell resolution are underway60,61, it will probably take 
some time to attain a robust methodology.

Single-cell methodologies. In the past decade, it has 
become evident that populations of cells, even geneti-
cally identical ones, show high variability. This is exem-
plified by the resistance of bacteria to antibiotics62, the 
response of unicellular organisms to fluctuating envi-
ronments26,63, tissue differentiation and the response of 
cancer cells to chemotherapy63,64. To understand how 
such variability occurs, novel approaches to track DNA, 
RNA and proteins at single-cell resolution64 are essential.

One of the pioneering techniques to systemati-
cally measure protein abundance at a single-cell level 
was tracking fluorescence by flow cytometry (TABLE 1). 
A seminal study carried out in yeast obtained system-
atic measurements of protein abundance in single cells 
by investigating 2,000 yeast strains from the Yeast GFP 
collection9 by flow cytometry. This collection encom-
passes more than 5,000 yeast strains, in each of which 
one yeast gene has been fused to a GFP epitope at its car-
boxyl terminus, thus retaining its natural chromosomal 
context and promoter. By measuring protein abun-
dance under two growth conditions it was shown that 
yeast cells markedly modulate their proteome between 
growth in nutrient-rich medium and minimal medium. 
Importantly, many of these proteome changes could 
not be predicted by the changes in mRNA levels under 
these conditions7. One of the important aspects of such 
single-cell measurements was the possibility to extract 
information regarding the distribution of protein expres-
sion within the population — also known as ‘noise’. 
Noise analyses from this study defined highly regulated 
‘quiet’ proteins (which have low variability within the 
population), such as those involved in the translational 
machinery, versus noisy proteins (which have high vari-
ability within the population), such as stress response 
proteins7 (BOX 1).

Two of the shortcomings of flow cytometry are the 
dependency on genetic tagging for proteome-wide 
measurements and the limited availability of distin-
guishable fluorophores, which enables the measure-
ment of only 10–15 surface parameters in parallel. Mass 
cytometry overcomes the polychromatic constraints of 
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Fluorescence in situ 
hybridization
(FISH). A technique for 
detecting nucleic acids (DNA or 
mRNA) inside a single cell by 
use of a complementary 
oligonucleotide probe that 
is detected by fluorescence 
microscopy.

flow cytometry by tracking metal atoms; the detection 
is carried out by atomic mass spectrometry rather than 
by photon optics as used for flourophores65. There are 
up to 100 enriched stable isotopes of transition elements 
available that can be used as reporting tags and that can 
be measured simultaneously by the mass spectrometer 
at single-cell resolution. For example, 31 markers of the 
entire human haematopoietic system were measured to 
characterize the functional response to immune modu-
lators and small-molecule drug inhibitors66. Hence, 
mass cytometry data are compatible with conventional 
flow cytometry analyses; however, the dimensionality 
is markedly increased and enables a multiparameter 
cellular assessment66,67.

Due to lack of sensitivity, the least abundant two-
thirds of the labelled proteins cannot be detected by 
existing flow cytometric approaches7,68. To complement 
these efforts, microscopic approaches (TABLE 1) were 
recently used to assess the abundance of a wider range 
of proteins in the GFP-tagged yeast library9 under vari-
ous stresses and with mutated genetic backgrounds25–27,69. 
Microscopy-based methodologies (BOX 2) can provide 
accurate quantification of more than 85% of the tagged 
yeast proteins25,26. For example, application of various 
stresses, such as DNA damage25, reducing or oxidizing 
stress and starvation26, resulted in changes to the abun-
dance of hundreds of proteins with a poor correlation 
to the corresponding mRNA changes26. This technol-
ogy is rapidly developing; however, it is still costly and 
laborious to implement (reviewed in REF. 70).

Systematic efforts (such as The Kahn Dynamic 
Proteomics Database) have also been carried out in 
human cell lines using a library of annotated reporter 
cell clones (LARC)71. In the LARC collection, each clone 
contains an endogenous protein fused to YFP, which is 
expressed from its natural promoter and in its normal 
chromosomal context. Although it is incomplete (cur-
rently 2,180 clones out of the entire human genome)72, 
this library has revolutionized the scope of single-cell 
proteomics in humans. The main applications so far 
have been to study the dynamics in quantity and loca-
tion of each tagged protein by means of automated 
time-lapse fluorescence microscopy during cell cycle 
stages73 and in response to chemotherapy treatments 
and environmental stresses74.

A similar YFP-tagged library of 1,018 strains has 
been constructed and measured in Escherichia coli75,76. 
The library was quantitatively imaged during growth 
in a microchemostat using a single-molecule fluores-
cence microscope77 (BOX 2; TABLE 1). The flow chamber 
used was not only sensitive (enabling the detection of 
the low copy number of endogenous proteins)77 but 
also provided rapid analysis of 16,000 cells per minute, 
which made it possible to quantify single-cell protein 
abundance. Interestingly, in this system, the mRNA 
of each tagged gene was detected by fluorescence in situ 
hybridization (FISH) using probes that recognized the 
YFP-encoding mRNA sequence, and hence parallel 
readouts of mRNA and protein levels were obtained. 
This led to the non-trivial observation that, in E. coli, at 
single-cell resolution there is no correlation between the 
mRNA and protein levels77.

The recent development of high-throughput micro-
chemostats (BOX 2) has emerged as a powerful tool for 
single-cell analysis. In contrast to the static measure-
ments obtained by microscopy and flow cytometry, 
microchemostats enable time-lapse experiments and 
can assess ~1,000 strains in parallel, while maintaining 
a high spatiotemporal resolution27,78. Using this method, 
the abundance and localization of ~4,000 yeast proteins 
from the GFP library9 were determined in response to 
the DNA damage inducer methyl methanesulphonate, 
and an additional five conditions were analysed for 576 
of these proteins27. The superior acquisition speed of this 
setup relative to all other methods to date enables the 
measurement of stress responses at the very early stages, 
and in a dynamic and controllable environment.

To summarize, novel libraries of tagged molecules 
together with advanced acquisition tools enable protein 
abundances of entire proteomes to be measured in single 
live cells. Calculations that take into account the total 
number of protein copies per unit of cell volume and 
other known parameters, such as the protein mass rela-
tive to the composition of cells and the average protein 
length, estimated that there are 2–4 million proteins 
per cubic micrometre (that is, 10–15 l) in bacteria, yeast 
and mammalian cells79. However, these numbers are 
in apparent discrepancy to the values obtained using 
system-level proteomics and even more so relative to 
conventional biochemistry. For example, values that are 

Box 1 | Using single-cell proteomics to gain insight into cellular decision making

New possibilities to study protein dynamics at single-cell resolution enable the acquisition of information on molecular 
diversity. Heterogeneity between cells can be due to the randomness of molecular processes (such as signalling, 
transcription and translation), but can also result from active ‘bet-hedging’ strategies whereby cells with identical 
genomes drive different proteomic landscapes to induce variable qualities.
Cellular diversity in decision making is prevalent throughout all life forms, including viruses, bacteria, yeast and lower 

metazoans to mammals63,147,148. In the budding yeast Saccharomyces cerevisiae, hundreds of proteins expressed from 
their native promoters have highly ‘noisy’ (REF. 7) or even bimodal26 expression patterns. Interestingly, genes with 
increased noise levels were associated with stress responses, which indicates that variability in protein expression gives 
an advantage that is selected for under such conditions. The ability to distribute risks (both fitness for the long term and 
survival in the short term) in combination with cell‑to‑cell communication and environmental sensing are the 
underlying rules that govern pattern formation and development from microorganisms to mammals. Therefore, the 
current efforts in developing single-cell resolution methodologies to measure the various components of the cell will, 
in the future, help to answer a range of cell biological questions.
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Ribosome profiling
A strategy for sequencing 
ribosome-protected mRNA 
fragments to provide a 
genome-wide map of 
translated proteins.

reported for fission yeast and mammalian cells are often 
approximately threefold to tenfold lower79. These differ-
ences highlight the need to push the limits of these sys-
tems even further79 and to carefully rescale values taking 
into account key physiological parameters.

As mentioned above, the measured protein level 
reflects the outcome of interconnected regulatory 
determinants, such as translation, post-translational 
modifications, localization, protein–protein interactions 
and degradation. In the following sections, we discuss 
systematic measurements of these processes.

Obtaining translation levels
Regulating protein translation is an important aspect 
of controlling protein abundance80–82. Ribosome profiling 
strategies have emerged as a powerful tool to map 
which mRNA transcripts are translated at any particular 
moment and at what efficiency, in a systematic manner5 
(TABLE 1) (reviewed in REF. 83). First demonstrated for 
yeast, ribosome profiling was used to infer translation 
levels under both nutrient-rich and starvation condi-
tions5, or during meiosis84. The great advantage of this 
method is that it is readily applied to any organism, 
including higher eukaryotes, and even to the very com-
plex mammalian proteome85–87. For example, ribosome 
profiling of mouse embryonic stem cells85 revealed that 
the translation levels of a large number of transcripts 
changed after differentiation. Moreover, the profiling 
uncovered new protein isoforms that arise from short, 
polycistronic ribosome-associated coding RNAs, amino-
terminal extensions, truncations of known proteins and 
translation initiation at non-AUG codons85. Ribosome 
profiling of primary human cell lines during human 
cytomegalovirus infection revealed an unanticipated 
complexity of the coding capacity of the virus. For 
example, multiple distinct polypeptides can be generated 
from a single genomic locus by alternative start sites86. 
Recently, the widespread dynamic nature of translational 
regulation of hundreds of mRNAs has been discovered 
to underlie mammalian cell cycle progression87, and 
the coordination of the translational control of mRNAs 
within molecular complexes dedicated to cell cycle pro-
gression, lipid metabolism, and genome integrity and 

organization have also been demonstrated87. Generally, 
the parameters obtained by these approaches can be 
used in holistic calculations aiming to understand how 
protein levels are regulated in the presence of a given 
mRNA and tRNA pool, as well as to calculate codon 
usage considerations88.

Measuring post-translational effects
The final translated protein product is subject to addi-
tional regulatory processes, such as modifications, 
determination of subcellular localization, acquisition of 
physical interactions and degradation. Such alterations 
are major determinants in controlling the abundance 
and function of each protein.

Computing turnover rates. Protein degradation is an 
important determinant of absolute protein abundance 
(FIG. 1). The half-lives of individual proteins can range 
from minutes to years89; hence, knowing the degrada-
tion rate of a protein is very important. To systematically 
measure protein half-lives in yeast, the TAP epitope-
tagged collection of proteins36 was quantified by west-
ern blot as a function of time following the inhibition 
of protein synthesis90. This seminal study from 2006 is 
still of relevance today, despite the introduction of newer 
techniques such as quantitative non-canonical amino 
acid tagging (QuaNCAT; see below). Incorporation of 
half-life measurements with the assessment of mRNA 
abundance and translation rates showed that transcrip-
tion, translation and protein degradation are tightly 
coordinated to achieve uniform effects on protein abun-
dance90. Interestingly, clustering of 3,751 yeast proteins, 
according to production rates, protein abundance and 
degradation rates, revealed two types of protein meta
bolism: the first is optimized for efficient protein pro-
duction, which is characterized by high production rates 
and abundance, and low degradation rates; the second is 
optimized for regulatory functions, which is character-
ized by low production rates and abundance, and high 
degradation rates90. Unfortunately, this approach to 
measure protein half-life is neither easily transferrable 
to other organisms nor easily applicable to study protein 
dynamics during stress responses for the same reasons 

Box 2 | Using microfluidics devices and microscopy platforms for proteome measurements

Automated visualization systems are designed for the large-scale tracking of different strains in parallel. 
Current advances in image processing and extraction of data enable single-cell resolution measurements of a wide 
variety of physiological parameters in addition to fluorescence emission.

High-throughput microscopy
A large number of microscopes are now available with an automated platform to rapidly acquire images, both 
bright-field and fluorescent, in 96‑well and 384‑well formats by means of an automated stage and appropriate software. 
This approach can be optimized for genome-wide screens by tailoring them into an automated sample preparation 
platform. Using automated microscopy platforms, it is so far possible to obtain static measurements (single time point) of 
a large number of samples or to carry out time-lapse tracking for a smaller sample size70.

Microchemostat
This approach enables the growth and tracking of strains in a large number of separated chambers. The major advantage 
of such a setup is that strains can be kept under constant conditions by generating a flux of medium. When such systems 
are integrated with microscopy they enable tracking of single cells in a tightly controlled environment and in a very short 
time frame. Another advantage over conventional microscopy setups is the ability of microchemostat-based approaches 
to carry out time-lapse tracking in a genome-wide manner27. 
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as mentioned above: the method is laborious, depend-
ent on collections of tagged strains and only provides a 
population-level analysis.

Protein half-life measurements have also been carried 
out in human cell lines using bleach–chase experiments 
on the LARC collection71. Specifically, 100 clones were 
bleached and tracked by time-lapse fluorescence micros-
copy using automated image analysis at a high temporal 
resolution of every 20 minutes for 24 hours to obtain 
protein decay rates under normal conditions91 and under 
stress92. 

Recently developed tandem fluorescent protein tim-
ers (tFTs) are optimal for the measurement of protein 
half-life. The tFTs are built from a fusion of two single-
colour proteins, which have non-overlapping emission 
spectra, that mature with distinct kinetics93,94. When a 
tFT is fused to a native protein, the ratio of fluorescence 
intensities from the two fluorescent protein domains 
indicates the age of a protein. The fusion of tFTs to pro-
teins of interest has enabled their longevity, segregation 
and inheritance to be studied, as well as their mobility 
between subcellular compartments over time in living 
yeast cells93. For example, these experiments revealed 
the stable nature and asymmetric inheritance of nuclear 
pore complexes93. Although they have the advantage of 
providing a high-resolution analysis, both bleach–chase 
experiments and tFTs have the disadvantage of requiring 
extensive cloning to construct artificial collections of 
tagged proteins and therefore cannot be easily applied 
to future proteome-wide studies.

An alternative strategy for measuring protein turn-
over rates is mass spectrometry-based detection95–97. 
Developments such as bioorthogonal non-canonical 
amino acid tagging (BONCAT)98, in which metabolic 
labels are introduced to cells in a pulse, distinguish 
new proteins from old proteins. When BONCAT is 
coupled with pulsed SILAC (pSILAC)99, it is known as 
QuaNCAT100 and enables rapid large-scale proteomic 
quantification of translation and degradation by both 
enriching and quantifying newly synthesized proteins. 
Using QuaNCAT, chemoattractant-induced cytoskeleton 
dynamics in Dictyostelium discoideum cells were shown 
in a time resolution of seconds to minutes101. Application 
of such an approach in Streptomyces coelicolor cultures 
enabled the estimation of protein turnover rates for 115 
highly abundant proteins during the transition from 
exponential growth to stationary phase102. In human 
cells, QuaNCAT was used to monitor the early expression 
changes of more than 600 proteins in primary resting 
T cells exposed to activation stimuli103.

Charting post-translational modifications. Post-
translational modifications of proteins, such as 
sumoylation, palmitoylation, ubiquitylation and phos-
phorylation, are highly prevalent and versatile, and can 
markedly affect protein stability, function, localization 
and physical interactions. In most cases, consensus 
sequences for predicting modifications are not simple to 
characterize, and the physiological implications of these 
modifications, their effect on protein fate and their con-
tribution to cell homeostasis are yet to be understood104. 

Several strategies have been developed to systematically 
uncover the broad array of modifications on all proteins. 
The major approach is to identify peptides modified by 
a post-translational modification using mass spectrom-
etry. Peptides carrying the studied modification can be 
enriched after labelling and purification (through a col-
umn or pull down with a specific antibody) (reviewed in 
REF. 11). One such example is the global analysis of pro-
tein palmitoylation (a lipid modification) in yeast105,106. 
This approach relies on an acyl–biotinyl exchange, in 
which biotin moieties were substituted for the acyl 
modification and used for subsequent purification 
of modified proteins and their identification by mass 
spectrometry106 (TABLE 1). Using such methods enables 
not only the discovery of new protein substrates carry-
ing a particular post-translational modification but also 
the study of the modification machinery by quantifying 
which substrates disappear when specific enzymes (in 
this case, palmitoyltransferases) are deleted105.

Similar approaches can be used to study the phos-
phorylation of all proteins (phosphoproteome) in par-
allel in many different organisms. For example, the 
phosphorylation events underlying the transition to 
a filamentous growth form in yeast, and the kinases 
mediating these events, have been measured107. By tak-
ing the phosphorylation events and integrating them 
with other data, it was possible to identify and validate 
new proteins that affect invasive growth107. In another 
example, the phosphoproteome was characterized dur-
ing yeast osmotic shock, and more than 5,000 unique 
phosphopeptide variants were identified, of which 15% 
changed more than twofold following 5 minutes of 
osmotic shock8. In Bacillus subtilis, phosphoproteomics 
uncovered Arg phosphorylation as a novel modifica-
tion that is implicated in the general stress response108. 
Also, the measurement of the phosphoproteome of nine 
mouse tissues showed that a typical phosphoprotein is 
widely expressed but that it has variable, often tissue-
specific, phosphorylation states that tune protein activity 
to the specific needs of each tissue55. For example, the 
expression of phosphorylated Tau, the hallmark of many 
neurodegenerative diseases, was detected in nearly all 
tissues, which indicates that it might have a more general 
role as a regulator of cytoskeletal dynamics than previ-
ously appreciated. However, the discovery of extensive 
brain-specific phosphorylation sites in Tau provides a 
potential explanation for its unique role in these cells55. 
Such approaches can also be used to identify targets of 
a regulatory complex directly, such as the identification 
of substrates of the mTOR complex in mouse embryonic 
fibroblasts109. Proteomic and phosphoproteomic profil-
ing of human embryonic stem cells during differentia-
tion110 and maintenance111, as well as their comparison to 
induced pluripotent stem cells, revealed differences that 
had a functional relevance and that highlighted signal-
ling networks12,112. To enable these types of experiment 
to be carried out with ease, protocols for the preparation 
of samples are being improved, advanced acquisition by 
mass spectrometry is developed and comprehensive 
analysis programmes for the identification of protein 
phosphorylation sites are becoming prevalent11.
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Protein microarray
A method to study protein 
modifications or physical 
interactions. Proteins are 
immobilized on glass slides and 
exposed to probe molecules 
(usually fluorescently labelled). 
A reaction between the probe 
and the arrayed protein emits 
a signal that is detected by a 
laser scanner.

An additional post-translational modification that can 
be analysed by mass spectrometry in a similar manner 
is ubiquitylation113. This modification is highly dynamic 
in response to a halt in protein translation or degrada-
tion113. An important drawback of this approach is that it 
is still challenging to distinguish ubiquitylation sites from 
sumoylation sites, as both leave diglycine isopeptides that 
can be recognized by an enriching antibody after tryptic 
digestion11. The mass spectrometry approach is appli-
cable to any type of modification that can be enriched, 
such as methylation, acetylation, poly(ADP)ribosylation 
or glycosylation, and hence offers exciting possibilities 
for future discoveries. As more than 200 types of in vivo 
modifications are known, the major challenge will be to 
tailor the enrichment steps11.

A novel technology that is now emerging for the 
analysis of protein modifications is the protein microarray. 
As a readout, modified products are detected by specific 

antibodies or other colorimetric assays104,114 (TABLE 1). 
Using this methodology, mammalian cell extracts were 
analysed and this revealed 1,500 potential substrates of 
various ubiquitin-like modifications. A major disadvan-
tage of this method is that it exposes proteins to the arti-
ficial condition of cell lysis, in which proteins and ions 
lose their cellular compartmentalization. However, it has 
the major advantage that it can be applied to additional 
post-translational modifications and enables analysis 
of the dynamics between different cellular phases or 
various tissues.

Mapping changes in localization. Regulation of protein 
localization is often used to control processes quickly 
and independently of de novo protein synthesis25,29,72,73,91. 
For example, the 26S proteasome accumulates in pro-
teasome storage granules upon glucose depletion115 to 
tightly regulate its function and stability. However, cel-
lular control of protein activity by modulating its com-
partmentalization is not easily measured on a large scale. 
To explore the localization dynamics of proteins on a 
genome-wide scale, three strategies have been used.

The first strategy involves microscopic imag-
ing of fluorescently tagged protein collections9,71. For 
example, imaging of the GFP-tagged yeast collection 
enabled the systematic identification of the localization 
of 75% of the proteome and the classification of proteins 
into 22 distinct localization categories under normal 
growth conditions9. It has been shown that hundreds of 
changes in protein localization occur when this library 
is exposed to environmental stress conditions25–27, which 
implies that protein relocalization under stress is a far 
more widely used strategy than previously appreciated. 
Similarly, the human LARC collection71 was used to dis-
cover the dependence of nuclear protein localization on 
the cell cycle71,73. These methods are accurate and rapid, 
but they rely on the creation of fluorescently tagged 
protein collections.

The second strategy to determine protein localization 
in cell culture is immunohistochemistry. The Human 
Protein Atlas37 project is using this approach to iden-
tify the subcellular localization of protein-coding genes 
in three different cell lines in a systematic manner. The 
entire human proteome should be examined within the 
next two years. However, to analyse changes in protein 
localization following stress is an enormous task even 
for a single cell line.

The third strategy is based on the biochemical isola-
tion of organelles followed by mass spectrometry and has 
been used to construct a catalogue of the protein content 
of subcellular structures116,117. Mass spectrometry-based 
proteomics can be used to study the dynamics of the pro-
tein content in organelles and therefore is complemen-
tary to fluorescence-based microscopy but without the 
need to tag genes. For example, subcellular fractionation 
of SILAC-labelled HeLa cells into compartments ena-
bled an unbiased analysis of how proteins move from 
one cellular compartment to another in response to per-
turbations116. However, fractionation-based approaches 
are not yet sensitive enough to detect proteins from 
single cells. Moreover, as many fractionation protocols 

Box 3 | Future perspectives in proteomic studies

Accessibility
It is essential to adapt existing proteomic technologies to be cost- and time-effective, 
as well as simple to use, such that every laboratory can measure proteome dynamics. 
This includes the creation of user-friendly and cost-effective equipment, and the 
convergence of high quality freeware analysis platforms. This will ensure that 
proteomics becomes as straightforward as microarray and deep-sequencing 
technologies are now.

Resolution
Studies at the population level have an averaging effect that often eliminates 
interesting biological information. Although some readouts can already be carried out 
at single-cell resolution, new technologies will have to be created to advance this 
ability.

Accuracy
A fundamental question concerning proteome-wide resolution is how to ensure 
complete coverage including protein species. Currently, mass spectrometry-based 
technologies are the only platform that can be considered comprehensive. However, 
in contrast to simple model organisms such as yeast, for which complete proteome 
coverage can now routinely be obtained, several developments are required to reach 
the same resolution for complex proteomes such as the human proteome41. To this end, 
different bottlenecks in the scheme are being addressed, such as robustness of sample 
preparation to cover low-abundance proteins or membrane proteins149, creation of 
enriching protocols for unstudied modifications, optimization of peptide separation 
and analysis in the mass spectrometer, and assembly of analysis pipelines to interpret 
the biological relevance of the results. Broadening the detection limits and increasing 
the sensitivity will soon enable the streamlined, straightforward and complete analysis 
of mammalian proteomes.

Comparison
Although vast amounts of data have been collected for both proteomes and 
transcriptomes, we still lack an understanding regarding their coordination31. 
Single-cell measurements of Escherichia coli proteins and their corresponding 
transcripts demonstrate little correlation between copy numbers77. Hence, the next 
frontier is to track proteins and mRNAs in parallel in other organisms, thereby reducing 
the discrepancies that arise from independent measurements and enabling the 
discovery of the underlying principles of co‑regulation.

Integration
The growing availability of systematic cellular data alongside computational work is 
enabling a new era of biological modelling124,142–145,150. Analysis pipelines will have to 
be developed to enable the integration of a wide variety of proteome-level data. 
The major challenge in this direction is the definition of protein variants for each 
protein-coding gene. An ultimate goal would be to incorporate additional profiling, 
such as glycomics, lipidomics, metabolomics and enzymology, to gain a true 
understanding of the crosstalk between the cellular layers of information.
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Post-translational
regulation of the proteome?

Post-translational regulation
of the proteome?

Sensing of changes
by the proteome

Sensing of changes
by the proteome

Transcriptional regulation
of the proteome

New cellular steady stateCellular steady state

Mild stress or
spontaneous
fluctuation

Severe or
chronic stress

Protein-fragment 
complementation assays
Assays for measuring protein–
protein interactions based on 
the premise that when two 
proteins interact they also 
bring into proximity any 
protein fragments attached 
to them, thus enabling the 
fragments to complement each 
other and to fold into an active 
reporter protein.

Two-hybrid screens
Types of protein-fragment 
complementation assay in 
which each half of a split Gal4 
transcription factor (the 
DNA-binding domain or the 
activation domain) is fused to 
one of two proteins of interest 
(bait and prey). Physical 
proximity of the two proteins 
enables the reconstitution of 
the Gal4 transcription factor, 
thus leading to transcriptional 
activation.

Split-ubiquitin assays
Types of protein-fragment 
complementation assay in 
which each half of a ubiquitin 
enzyme is fused to one of two 
proteins of interest (bait and 
prey). One half of the ubiquitin 
is also fused to a transcription 
factor. Physical proximity 
enables the reconstitution of 
the split protein into a ubiquitin 
moiety that is recognized by 
endogenous ubiquitin-directed 
proteases, which cleave 
between the ubiquitin and the 
transcription factor. The 
cleaved transcription factor can 
relocate to the nucleus and 
activate a reporter gene.

Split-DHFR assays
Types of protein-fragment 
complementation assay in 
which each half of a split 
dihydrofolate reductase (DHFR) 
enzyme is fused to one of two 
proteins of interest (bait and 
prey). Physical proximity 
enables the reconstitution of 
the split protein into a 
functional DHFR enzyme, 
which makes it possible for 
cells to grow in the presence of 
an inhibitor of the endogenous 
and essential DHFR enzyme 
(such as methotrexate).

only enrich for certain organelles rather than fully puri-
fying them, care should be taken in the interpretation 
of such data.

Detecting physical interactions. Proteins function as 
a dynamic network, therefore the elucidation of pro-
tein–protein interactions provides insight into funda-
mental aspects of function, organization and signalling 
in cells. System-level interactome analysis has been 
extensively carried out using various protein-fragment 
complementation assays, such as two-hybrid screens118, 
split‑ubiquitin assays119 or split-DHFR assays22, as well as 
TAP followed by mass spectrometry analyses120 and 
protein microarrays121 (TABLE 1), combined with bio-
informatics-based approaches122,123. These strategies 
have been applied to a wide variety of organisms, such 
as E. coli124, the yeast Saccharomyces cerevisiae22, plants 
(Arabidopsis thaliana, Oryza sativa and Brachypodium 
distachyon)125, Caenorhabditis elegans126, Drosophila 
melanogaster 127 and humans128–130. However, most 
approaches for mapping protein–protein interactions 
require cloned protein-coding sequences, thus mak-
ing it laborious to create complete collections in addi-
tional organisms. Importantly, current methodologies 
for the investigation of protein–protein interactions all 

require averaging of entire populations. However, some 
approaches are now being developed, such as split‑YFP 
approaches131,132, that should enable the analysis at 
single‑cell resolution (reviewed in REFS 133,134).

The identification of protein–protein interactions has 
been used for various analyses. First, it enables a protein 
with a completely unknown function to be placed into 
a functional context that is given by its binding partners 
with a known function135. In addition, by mapping the 
changing interactions that occur in different cellular 
environments, insights into functional complexity can be 
obtained. Understanding protein–protein interactions 
can help to elucidate the pathophysiology and develop-
ment of many diseases136–139, to identify novel drug tar-
gets and to understand the mechanisms of action of new 
therapeutic compounds135. For example, building the 
most complete interactome of proteins associated with 
Alzheimer’s disease has revealed 200 high-confidence 
protein–protein interactions between eight confirmed 
Alzheimer’s disease-related genes and 66 candidate dis-
ease-related genes. Of these candidate disease-related 
genes, 31 are located in chromosomal regions containing 
susceptibility loci related to the aetiology of late-onset 
Alzheimer’s disease, and 17 of them have dysregulated 
expression patterns in patients with Alzheimer’s disease. 

Box 4 | Uncovering the role of the proteome in buffering fluctuations

Current proteomic studies, although far from having covered the entire biological landscape, already provide huge 
amounts of information across many organisms and conditions. An important conclusion of these data is the 
underestimated dynamic capacity of proteins and the role of this capacity in every aspect of cellular physiology. We now 
begin to uncover how cells regulate protein levels in a post-translational manner to respond robustly to ever-changing 
environmental conditions. Therefore, information about protein variants, modifications, levels and localization is crucial 
to our understanding of cellular response pathways. As proteins are the sentinels that connect a cell to the external 
world, sense the environment and integrate all inputs into a molecular decision, it is not surprising that the preliminary 
response to a change in inputs involves regulation at the protein level. Moreover, it might be the case that correct 
regulation of proteins may be sufficient, under some circumstances, to prevent the cell from initiating a transcriptional 
response, such that the post-translational response functions as a molecular buffer (see the figure).
For the proteome to function as a buffer for transcriptional activation it should have a very low threshold for detecting 

perturbations, while keeping a very high threshold for initiating a transcriptional response. Proteomic-level regulation 
must therefore be rapid and finely tuned. Hence, uncovering the scope of post-translational regulation necessitates 
studying conditions of mild perturbations that do not induce a transcriptional response. Biological experiments often use 
radical stress stimuli to enable a robust transcriptional response as the readout. Therefore, to uncover the elegance of 
cellular behaviour and the extent of protein buffering, small perturbations should be carried out and highly accurate 
methods of proteomic measurement should be used to collect information on the changes to the proteome that occur 
early after stimulation. This distinction between changes in the transcriptome and proteome in response to stimuli should 
be taken into account when modelling cellular responses.
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Split-YFP approaches
Types of protein-fragment 
complementation assay in 
which each half of a split 
fluorescent protein (YFP, GFP 
or cyan fluorescent protein) is 
fused to one of two proteins of 
interest (bait and prey). 
Physical proximity enables the 
reconstitution of the split 
protein into a functionally 
fluorescent product.

Moreover, the detection of four novel direct interactions 
between well-characterized Alzheimer’s disease-related 
genes (APP (amyloid-β (A4) precursor protein), A2M 
(α2 macroglobulin), APOE (apolipoprotein E), PSEN1 
(presenilin 1) and PSEN2) strongly validates the capac-
ity of protein–protein interaction studies to support the 
formulation of molecular mechanism hypotheses and 
to elucidate their malfunction in disease progression140.

Conclusions
In this Review, we have provided a summary of current 
technologies and their capacity to answer various bio-
logical questions. In the past, measurements of mRNA 
abundance were assumed to follow the basic dogma of 
one gene leading to one protein. However, proteomic 
studies showing post-translational regulation of pro-
teins, protein modifications, protein isoforms (alterna-
tive splicing) and variability within populations indicate 
that this paradigm is far from accurate141. Thus, the next 
big frontier is describing this diversity by integrating 
data for the various parameters that can be measured, 
although this is computationally challenging (BOX 3). 
Recent studies use proteomic profiling to improve 
genomic annotation based on the incorporation of RNA 
sequencing data sets (proteogenomics)142, to integrate 
multidimensional ‘omics’ data to characterize biologi-
cal networks143,144 and to develop personalized medicine 
approaches145,146. The determination of all expressed pro-
teins and their changes in expression during a process of 
interest could revolutionize classic medical research in 
the entire cellular system. For example, integrative per-
sonal omics profile (iPOP), an analysis that combines 
genomic, transcriptomic, proteomic, metabolomic and 

autoantibody profiles from a single individual over a 
14‑month period, revealed various medical risks and 
uncovered extensive molecular changes across healthy 
and diseased conditions146. Therefore, this huge leap 
in system-level profiles and the wealth of data stem-
ming from it can now potentially function as a valuable 
resource to develop personalized medical approaches. 
Obtaining complete dynamic profiles for diseased and 
healthy individuals over time will be extremely valuable 
in the early diagnostics, monitoring and treatment of 
disease states146.

Current achievements in studying system-level pro-
teomics provide a wide view of protein characteristics 
under changing conditions. The variability in protein 
function mediated by the post-translational events 
described here requires that we now shift the focus 
of studies in cellular responses from simple measure-
ments and comparisons, to dissecting combinatorial and 
modulatory effects that fine-tune the cellular response 
(BOX 1). This has been extensively done in some fields 
in which cellular decisions are known to be modu-
lated by post-translational effects, such as apoptosis147, 
and should now be expanded to other fields. Directly 
studying cellular dynamics at the protein level opens 
up a new perspective of cell biology that could not be 
systematically studied before, but there is still much to 
be achieved (BOX 3). Recent years have brought prosper-
ity in our proteomic scope and in our understanding of 
the role of proteins in maintaining homeostasis (BOX 4). 
Delving deeper into the behaviour of this first line of 
defence, mediated by the ‘workers’ of the cell, will paint 
an increasingly vivid and interesting picture of cell 
biology in the coming years.
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149.	Wiśniewski, J. R., Zougman, A., Nagaraj, N. & 
Mann, M. Universal sample preparation method for 
proteome analysis. Nature Methods 6, 359–362 
(2009).

150.	Gorini, G., Nunez, Y. O. & Mayfield, R. D. Integration 
of miRNA and protein profiling reveals coordinated 
neuroadaptations in the alcohol-dependent mouse 
brain. PLoS ONE 8, e82565 (2013).

Acknowledgements
Work in the authors’ laboratory is supported by a European 
Research Council (ERC) C Starting Grant (260395). M.S. is a 
European Molecular Biology Organization (EMBO) Young 
Investigator.

Competing interests statement
The authors declare no competing interests.

DATABASES
Human Proteinpedia: http://www.humanproteinpedia.org
Max-Planck Unified (MAPU) Proteome Database:  
http://www.mapuproteome.com
PeptideAtlas: http://www.peptideatlas.org
The Human Protein Atlas: http://www.proteinatlas.org
The Kahn Dynamic Proteomics Database:  
http://www.weizmann.ac.il/mcb/UriAlon/DynamProt/
The localization and quantitation atlas of the yeast 
proteome: http://wws.weizmann.ac.il/molgen/loqate/
Yeast GFP Fusion Localization Database:  
http://yeastgfp.yeastgenome.org

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

R E V I E W S

464 | JULY 2014 | VOLUME 15	  www.nature.com/reviews/jrnl

© 2014 Macmillan Publishers Limited. All rights reserved

http://www.humanproteinpedia.org
http://www.mapuproteome.com
http://www.peptideatlas.org
http://www.proteinatlas.org
http://www.weizmann.ac.il/mcb/UriAlon/DynamProt/
http://wws.weizmann.ac.il/molgen/loqate/
http://yeastgfp.yeastgenome.org

	Abstract | During the lifetime of a cell proteins can change their localization, alter their abundance and undergo modifications, all of which cannot be assayed by tracking mRNAs alone. Methods to study proteomes directly are coming of age, thereby openin
	Figure 1 | Modes of post-transcriptional regulation to control the functional protein pool of the cell. The synthesis of a fully mature and functional protein according to its encoding mRNA transcript is a complex process of interconnected nodes of regula
	Measuring protein abundance
	Table 1 | Common assays used in proteomic studies
	Box 1 | Using single-cell proteomics to gain insight into cellular decision making
	Box 2 | Using microfluidics devices and microscopy platforms for proteome measurements
	Obtaining translation levels
	Measuring post-translational effects
	Box 3 | Future perspectives in proteomic studies
	Box 4 | Uncovering the role of the proteome in buffering fluctuations
	Conclusions



